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RESUMO

FLORES, Walter Oswaldo. Modelos de Aprendizado de Máquina para Detectar Estresse
Abiótico e Clorofila Total em Folhas de Trigo Usando Espectroscopia Óptica. 2024. 118 f.
Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) – Universidade
Tecnológica Federal do Paraná. Curitiba, 2024.

A detecção do estresse abiótico e a estimativa da clorofila é fundamental para determinar a
saúde das plantas. Existem diferentes métodos para estimar e detectar esses valores nas plantas
com espectroscopia óptica. Os métodos podem ser destrutivos (espectroscopia de absorção)
ou não destrutivos (espectroscopia de reflexão). Assim, o objetivo principal desta pesquisa é
desenvolver modelos de inteligência artificial para detectar estresse abiótico e estimar a clorofila
total em trigo por meio de espectroscopia de reflexão difusa. Foi realizado um experimento para
gerar quinze condições de estresse diferentes, incluindo iluminação e quantidade de água, a
partir de sementes de trigo que germinaram e cresceram até o sétimo dia. Com as amostras de
folhas de trigo, foram obtidos espectros de reflexão e absorção. Na análise para a classificação
por estresse hídrico (3ml, 5ml e 10ml), foram comparados vários modelos MiniRocket com
técnicas de pré-processamento, como o filtro Savitzky-Golay, a remoção de contínuo (CR), a
remoção de tendência (DT), a normalização dos espectros de reflexão por área, a variante padrão
normal (SNV) e a correção multiplicativa de dispersão (MSC). Os resultados mostram que os
modelos que empregam SNV e CR alcançaram precisão perfeita para dados de validação. Para a
classificação por estresse luminoso (LED verde, vermelho, azul, branco e um escuro), os modelos
avaliados com diferentes técnicas de pré-processamento atingiram precisões que variam entre
0.841 e 0.986, onde o melhor modelo obtido para a classificação do estresse luminoso alcançou
uma precisão de 0.986 para dados de validação. A previsão do conteúdo de clorofila em folhas de
trigo a partir de espectroscopia de reflexão difusa multiangular foi abordada utilizando modelos
de aprendizado de máquina que incluem rede neural profunda (DNN) e MiniRocket, revelando
que tanto DNN quanto MiniRocket apresentaram alto desempenho na previsão do conteúdo de
clorofila. MiniRocket mostrou tempos de processamento mais curtos (tão baixos quanto 2.667 s
e até 6.840 s), mas com um coeficiente de determinação de 0.928 para o melhor modelo. DNN
teve tempos de processamento mais longos (variando de 76.50 s a 152.35 s), mas alcançou
coeficientes de determinaçãon de 0.993 no conjunto de dados de validação. Finalmente, conclui-
se que a pesquisa demonstrou a eficácia de combinar a espectroscopia de reflexão multiangular
com técnicas de aprendizado de máquina para detectar estresse e estimar o conteúdo de clorofila
em folhas de trigo. Essa abordagem fornece um método mais preciso e robusto, abrindo novas
perspectivas e possíveis direções para futuras pesquisas em análise de plantas e aplicações
espectrais.

Palavras-chave: Espectroscopia de Refletância Difusa. Clorofila. Aprendizado de máquina.
Estresse Abiótico. Minirocket.



ABSTRACT

FLORES, Walter Oswaldo. Machine Learning Models to Detect Abiotic Stress and Total
Chlorophyll in Wheat Leaves Using Optical Spectroscopy. 2024. 118 p. Dissertation
(Master’s Degree in Electrical Engineering and Industrial Informatic) – Universidade
Tecnológica Federal do Paraná. Curitiba, 2024.

The detection of abiotic stress and the estimation of chlorophyll are fundamental for determining
plant health. There are different methods to estimate and detect these values in plants using optical
spectroscopy. The methods can be destructive (absorption spectroscopy) or non-destructive
(reflection spectroscopy). Thus, the main objective of this research is to develop artificial
intelligence models to detect abiotic stress and estimate total chlorophyll in wheat through
diffuse reflection spectroscopy. An experiment was conducted to generate fifteen different stress
conditions, including lighting and water amount, from wheat seeds that germinated and grew until
the seventh day. With the wheat leaf samples, reflection and absorption spectra were obtained. In
the analysis for water stress classification (3ml, 5ml, and 10ml), several MiniRocket models were
compared with preprocessing techniques such as the Savitzky-Golay filter, Continuum Removal
(CR), De-trending (DT), Normalization of Reflectance Spectra by Area, Standard Normal Variate
(SNV), and Multiplicative Scatter Correction (MSC). The results show that models using SNV
and CR achieved perfect precision for validation data. For light stress classification (green, red,
blue and white LEDs and one dark), models evaluated with different preprocessing techniques
achieved precisions ranging from 0.841 to 0.986, where the best model obtained for light stress
classification achieved a precision of 0.986 for validation data. The prediction of chlorophyll
content in wheat leaves from multi-angular diffuse reflection spectroscopy was addressed using
machine learning models including deep neural network (DNN) and MiniRocket, revealing
that both DNN and MiniRocket achieved high performance in predicting chlorophyll content.
MiniRocket showed shorter processing times (as low as 2.667 s and up to 6.840 s) but with
a coefficient of determination of 0.928 for the best model. DNN had longer processing times
(ranging from 76.50 s to 152.35 s) but achieved coefficients of determination of 0.993 for the
validation dataset. Finally, it is concluded that the research demonstrated the effectiveness of
combining multi-angular reflection spectroscopy with machine learning techniques to detect
stress and estimate chlorophyll content in wheat leaves. This approach provides a more accurate
and robust method, opening new perspectives and possible directions for future research in plant
analysis and spectral applications.

Keywords: Diffuse Reflectance Spectroscopyt. Chlorophyll. Machine learning. Abiotic Stress.
Minirocket.
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1 INTRODUCTION

The current climate changes are making agriculture face increasingly larger challenges

(PEDERSEN et al., 2022). Additionally, the growing world population increases the demand for

food (VALIN et al., 2014), making plant health analysis increasingly required and essential for

boosting agricultural production. Furthermore, techniques such as neural networks and machine

learning have emerged as powerful and reliable tools for analyzing datasets that could not be

efficiently managed with traditional methods. The ability of artificial intelligence (AI) to process

large amounts of data and extract relevant patterns allows for early detection of abiotic or biotic

stress, enabling better crop yields (JHA et al., 2019).

Among the most studied problems in agriculture is the early detection of plant stress.

Chlorophyll in leaves is a fundamental indicator for determining plant health. Traditional methods

for quantifying chlorophyll content in leaves use optical equipment and techniques such as

absorbance spectroscopy and Reflectance spectroscopy. The main differences between these

techniques lie in that absorbance spectroscopy is a destructive method that requires obtaining a

solution for subsequent analysis. On the other hand, reflectance spectroscopy is a non-destructive

technique that allows analysis only with the incidence of light on the leaf. The procedure for

quantifying chlorophyll through reflectance spectroscopy in leaves consists of a reading through

spectrometer adapters or portable equipment that obtain the count directly on the leaf or through

a specific angle of light that will be reflected towards the interrogator.

The ability to detect chlorophyll count as well as detect a certain stress in leaves using

a multi-angular setup (obtaining reflection spectra for different angles of light incidence) can

significantly improve the efficiency in chlorophyll quantification and stress detection in a more

robust manner. This dissertation focuses on the analysis of stress detection and chlorophyll esti-

mation in wheat leaves using multi-angular reflectance spectroscopy. The following subsections

describe the objectives, fundamental contributions, and structural scheme.

1.1 GENERAL OBJECTIVE

Develop machine learning models to detect abiotic stress and total chlorophyll in wheat

leaves using optical spectroscopy.
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1.2 SPECIFIC OBJECTIVES

To achieve the general objective mentioned in Section 1.1, several specific objectives

have been established. These objectives serve as tangible reference points to guide the research

towards the development of an efficient, safe, and simple procedure for detecting stress and

estimating total chlorophyll in wheat leaves through optical spectroscopy. Each specific objective

addresses a fundamental aspect of the research process, including the construction of the stress

environment, obtaining reflection and absorption spectra, as well as analysis with artificial

intelligence and validation.

1. Create a water and light stress environment for wheat leaves.

2. Produce a spectral database for reflection, for samples obtained under different angles of

light incidence, and absorption.

3. Discover machine learning models to detect water and light stress, with reflection spectra

for samples obtained under different angles of light incidence.

4. Discover machine learning models to estimate the amount of total chlorophyll, with

reflection spectra for samples obtained under different angles of light incidence.

1.3 CONTRIBUTIONS

This section highlights three main contributions of the research:

• Light stress identification through artificial intelligence techniques with reflection

spectra for samples obtained under different angles of light incidence: An experiment

was implemented to stress wheat leaves with 4 containers with different types of lighting

and one container without lighting. The stress was applied from germination to its growth

in 7 days. By acquiring diffuse reflection spectra, a model was trained to classify the type

of light stress to which the wheat plants were subjected.

• Water stress identification through artificial intelligence techniques with reflection

spectra for samples obtained under different angles of light incidence: An experiment

was implemented to stress wheat leaves, where 3 containers were set up with different

amounts of water at 3 ml, 5 ml, and 10 ml, from germination to growth in 7 days. By
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acquiring diffuse reflection spectra, a model was trained to classify the type of stress to

which the plants were subjected, enabling the detection and classification of water stress in

plants.

• Chlorophyll amount estimation with reflection spectra for samples obtained under

different angles of light incidence: The experiment was implemented allowing spectrum

acquisition at different angles of light incidence, these diffuse reflection spectra are related

to a specific amount of chlorophyll with which a model can be trained to predict the

chlorophyll amount through sample acquisition at different angles.

These three contributions are fundamental to advancing knowledge in the field of crops

and stress detection in plants through optical spectroscopy.

1.4 STRUCTURE OF THIS DOCUMENT

Figure 1, presents a visual map that illustrates the structure of this research work,

providing an overview of the organization and different components that make up this research

work.

Figure 1 – Map of this document, summarizing the structure and content of the Chapters
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Source: Own authorship (2024).

This document is organized as follows:

• Chapter 1, sets the context by introducing the research problem and the general and specific

objectives, as well as the structure of the dissertation.
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• Chapter 2, presents a description of wheat physiology, considerations on chlorophyll,

and a literature review of research work related to the work carried out with reference to

stress detection and chlorophyll estimation through reflectance spectroscopy. Section 2.2,

highlights the different methods to estimate chlorophyll in leaves. Section 2.3, describes the

scientific work that addresses the detection of different types of stress in leaves, highlighting

the spectroscopy technique used, the spectral region employed in the approach, the type

of abiotic stress detected, the plant species, and the type of analysis performed. Section

2.4, describes the scientific work that addresses chlorophyll estimation in leaves through

reflectance spectroscopy.

• In Chapter 3, the entire methodology applied in our research is shown. Section 3.2,

describes the construction of a stress environment for wheat plants, which considers 15

different stress conditions, as well as the required electronic implementation for time

control (on and off), and monitoring of temperature and humidity. Section 3.3, shows the

data collection method for constructing our reflection and absorption spectrum database.

Section 3.4, describes the preprocessing methods applied and the filter concepts used.

Section 3.5, presents the models used for stress classification by water and light and

total chlorophyll content estimation in leaves. Section 3.6, describes the metrics that will

validate the classification and regression models.

• Chapter 4, offers the presentation of the results obtained in the research through the

methodology explained in Chapter 3. In Section 4.1, the results related to the environmental

conditions of the containers (temperature and humidity) are shown. In Section 4.2, the

analysis of the data obtained for reflection and absorption spectra is presented, as well

as the results for the classification of abiotic stress (water and light) and estimation of

chlorophyll for multi-angular reflection spectra.

• In Chapter 5, an analysis of the research findings is presented, providing valuable conclu-

sions derived from the research.
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2 LITERATURE REVIEW

The objective of this chapter is to describe important aspects of wheat, the chemical

structure of chlorophyll and its characterization, as well as to review the scientific literature

in search of methods and techniques to quantify chlorophyll in leaves, detect stress in plant

leaves, and estimate total chlorophyll using reflectance spectroscopy. The review emphasizes the

spectroscopy technique used, the type of abiotic stress, particularly water and light stress, the

types of plants, and the statistical analysis or artificial intelligence technique applied.

2.1 WHEAT PHYSIOLOGY

Wheat (Triticum aestivum L.) is one of the most important food crops worldwide,

with an optimal growth temperature between 15 and 20°C. Heat stress negatively affects plant

growth and development, including photosynthesis in the leaves (ULLAH et al., 2022). Wheat

productivity is affected by various biotic and abiotic factors. Heat stress and drought are two

significant abiotic factors that limit wheat production. Drought, characterized by prolonged

periods of water scarcity, affects the ability of plants to grow and reproduce under low water

availability. Heat stress negatively impacts photosynthesis, accelerates leaf senescence, reduces

leaf area, and decreases yield (TYAGI; PANDEY, 2022).

2.2 METHODS FOR QUANTIFYING CHLOROPHYLL IN LEAVES

Chlorophyll is a crucial biochemical component in photosynthesis, allowing plants

and other photosynthetic organisms to convert solar energy into oxygen.The determination of

chlorophyll content in plants can be used for the implementation of corrective measures for

plant development. The atomic structure of chlorophyll a and b in acetone is shown in Figure 2.

Chlorophyll a is the most abundant form and gives plants their green color, while other forms

such as chlorophyll b, c, and d are present in smaller amounts (YSI Environmental, 2024).
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Figure 2 – Chemical structures of chlorophyll a and chlorophyll b in acetone

Chlorophyll a in acetone Chlorophyll b in acetone

Source: (KOBAYASHI et al., 2013).

In Equation 1, the process by which plants, algae, and some bacteria convert sunlight

into chemical energy is shown. In this reaction, carbon dioxide (CO2) and water (H2O) are

the reactants. As a result of this reaction, glucose (C6H12O6), a sugar that plants use as an

energy source and material for their growth, and oxygen (O2) are produced and released into

the environment. Thus, photosynthesis allows plants to transform carbon dioxide and water,

using the energy emitted by sunlight, into glucose and oxygen (LÓPEZ; SILVA, 2024; YSI

Environmental, 2024).

6 CO2 + 6 H2O
Sunlight−−−−→ C6H12O6 + 6 O2 (1)

Total chlorophyll content is the sum of chlorophyll a and b, where chlorophyll a

participates in light harvesting and the conversion of absorbed photon energy into chemical

energy. chlorophyll a is indispensable for oxygenic photosynthesis, being the only member of the

chlorophyll family present in all organisms that perform oxygenic photosynthesis. Depending

on its protein environment, it can function as a light harvester or as a redox participant in the

capture of electronic excitations and electron transport (BJÖRN et al., 2009). Chlorophyll b ,

although less abundant than chlorophyll a, is crucial for light capture in plants as it is converted

to chlorophyll a for subsequent degradation. chlorophyll b is synthesized from chlorophyll a and

catabolized after being reconverted to chlorophyll a (SHIMODA et al., 2012), (WILLSTÄTTER,

1915), (EGGINK et al., 2001).

In Figure 3, the characteristic absorption spectra of chlorophyll a and b are shown.
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Chlorophyll a and b exhibit absorption peaks at different wavelengths within the visible spectrum.

Chlorophyll a shows a prominent peak in the 431 and 663 nm, while chlorophyll b has peaks

in the 458 and 645 nm. These peaks indicate the wavelengths of light that chlorophylls absorb

most efficiently, which is essential for maximizing the efficiency of the photosynthetic process

(TANIGUCHI; LINDSEY, 2021; KOBAYASHI et al., 2013).

Figure 3 – Characteristic spectra of chlorophyll a and b. Chlorophyll a exhibits a prominent peak in both the
blue light and red light bands
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Various methods and techniques are employed to measure chlorophyll concentration

(SMITH; BENITEZ, 1955), each with its advantages and respective applications:

2.2.1 Absorption Spectrophotometry

Absorption spectrophotometry uses different wavelengths to quantify chlorophyll a,

chlorophyll b, and carotenoids in plant extracts, where the solvent used affects the absorption

coefficients (SEELY; JENSEN, 1965; SHINANO et al., 1996; SUMANTA et al., 2014). Mack-

inney (1941) describe a procedure for determining chlorophyll concentrations in plant extracts

such as oats and mallows, showing good agreement between calculated and experimental values
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for chlorophyll absorption (MACKINNEY, 1941). Also, by measuring absorbance at 663 nm

and 645 nm (as shown in the Figure 4 ), chlorophyll content can be quantified using specific

absorption coefficients and equations (ARONOFF, 1950), (MACKINNEY, 1941), a widely used

but destructive method involving leaf maceration.
Figure 4 – Characteristic graph of chlorophyll a and b absorption at the peaks of 663 nm for chlorophyll a

and 645 nm for chlorophyll b
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2.2.2 Reflectance Spectroscopy

The estimation of chlorophyll through reflectance spectroscopy as a non-destructive

method is a highly relevant and currently studied topic. Various methods have been used to

estimate chlorophyll through spectral bands and spectral ranges (KANDPAL; KUMAR, 2023),

(MAIN et al., 2011). The characteristic graph of the reflection spectrum in wheat leaves is shown

in Figure 5.
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Figure 5 – The characteristic graph of the reflection spectrum in wheat leaves is shown, with a peak intensity
around 550 nm (green band) and a plateau around 750 nm
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2.2.3 Fluorometric Methods

By measuring chlorophyll-induced fluorescence, data can be obtained on the plant’s

ability to capture and convert sunlight into chemical energy. This method is widely used to

measure photosynthetic efficiency and chlorophyll content (MURCHIE; LAWSON, 2013),

(SWOCZYNA et al., 2022).

2.2.4 Portable Chlorophyll Meters (SPAD)

The SPAD meter is a device used to measure chlorophyll concentration in plant leaves.

The SPAD technology works by measuring the amount of light passing through a leaf at two

specific wavelengths (usually around 650 nm and 940 nm), allowing for rapid and non-invasive

real-time measurements (KANDPAL; KUMAR, 2023).
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2.2.5 Image-based Methods

Chlorophyll estimation through hyperspectral images captures images across a wide

range of wavelengths to analyze chlorophyll distribution and quantity (LI et al., 2022), (GAO et

al., 2021), (DENG et al., 2024). Studies demonstrate chlorophyll detection through short-range

hyperspectral imaging, enabling precise chlorophyll mapping in canopies under varying light

intensities (ZHU et al., 2024).

RGB Image Analysis: The use of RGB cameras to estimate chlorophyll content through

image analysis based on the three primary colors: red (R), green (G), and blue (B). This method

is a fast and non-invasive way to determine chlorophyll content in leaves using RGB images

(YADAV et al., 2010).

2.2.6 Chemical Methods

High-Performance Liquid Chromatography (HPLC) is an analytical technique used to

separate, identify, and quantify components in a liquid mixture (LOUGH; WAINER, 1995). It

is widely used in chemistry, biochemistry, and pharmacology for analyzing complex mixtures,

such as separating compounds in drugs, foods, chemicals, and biological samples (LYNCH;

WEINER, 1979), (HANSEN; REUBSAET, 2015). HPLC is an essential tool in research and

quality control laboratories due to its precision and ability to provide detailed information on

sample composition (SHIOI et al., 1983), (HANSEN; REUBSAET, 2015), (MEYER, 2010).

2.3 DETECTION OF STRESS IN PLANTS BY REFLECTANCE SPECTROSCOPY

The detection of abiotic stress in plants is crucial for efficient agricultural management,

especially under climate change conditions and limited water resources. Several studies demon-

strate the application of optical spectroscopy and machine learning techniques to monitor and

predict the water status of different plant species using leaf spectral reflectance. The research con-

solidated in Table 1 synthesizes related studies on stress detection in different plant species, such

as vines, sunflowers, rice, and wheat, employing methodologies to estimate critical physiological

parameters under various water stress conditions. Techniques like reflectance spectroscopy in

the visible and near-infrared (Vis/NIR) range and hyperspectral data analysis combined with

artificial intelligence algorithms allow non-destructive estimation of parameters such as water
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content and other types of abiotic stress. The following paragraphs detail related research on the

application of reflectance spectroscopy, some statistical data processing methods, and the use of

artificial intelligence, highlighting the findings in each investigation.

Tunca et al. (2023) conducted a study in Samsun, Turkey, during the 2020 and 2021

sorghum growing seasons. They explored different levels of water stress on sorghum spectral

reflectance, leaf area index (LAI), and the accuracy of machine learning models (XGBoost,

RF, SVM) in estimating crop water content (CWC). Proximal hyperspectral data was collected

using an ASD Field Spec Pro spectrometer, covering the 325-1075 nm range and involving

non-destructive sampling of sorghum leaves. The results highlighted significant variations in

spectral reflectance due to irrigation treatments. The study underscores the utility of vegetation

indices such as CL_Rededge and EVI in improving CWC estimates. Spectral reflectance values

were obtained from a height of 4.5 m above ground level, and spectral measurements were

captured with a solar incidence angle of approximately 45°. However, this study’s limitation lies

in potential variations in results for different solar incidence angles, and it uses the hyperspectral

range.

Estrada et al. (2023) evaluated four wheat genotypes in pots under semi-controlled

conditions in Chile and Spain. Reflectance was measured with a FieldSpec 3 spectrometer

(Analytical Spectral Devices ASD Inc., Boulder, CO, USA) in the 350 to 2,500 nm range, along

with a contact probe (ASD Inc., Boulder, CO, USA) equipped with a 5 W halogen light. The

authors applied three treatments: control, water stress, and combined water stress with heat shock.

Changes in the genotypes’ spectral signature, in response to environmental fluctuations, were

associated with variations in stomatal conductance under water stress and combined water and

heat stress. It has the limitation of using a contact probe, which is subject to specific distance and

angle requirements.

Zhang et al. (2021) explored the classification of greenhouse tomato plants under

varying water stress conditions. They used two tomato varieties grown in greenhouses over

two seasons, subjected to three different irrigation treatments. Spectral reflections from the

tomato canopy were collected using visible and near-infrared spectroscopy. The successive

projections algorithm (SPA) was employed to identify six optimal wavelength bands, and the

analysis used a multilayer perceptron classifier (MLPC) and the one-vs.-rest classifier (ORC).

The results showed that MLPC achieved better classification accuracy than ORC, especially with

the full spectrum instead of selected optimal bands. The equipment used was a portable ASD
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FieldSpec® HandHeld™ 2 spectrometer (ASD Inc., USA). The collected wavelength range was

325–1075 nm, with a 25° field angle, and the optical input of the spectrometer was maintained at

3–4 inches. It has the limitation of a specific angle and distance for sample acquisition.

Das et al. (2021) conducted a study to evaluate leaf water content (LWC) in various rice

genotypes under water-deficit stress using visible-near infrared spectroscopy (VNIR). Using leaf

samples from ten rice genotypes, they found that spectral bands centered around 1400 nm showed

the best correlation with LWC at different water stress levels. Additionally, artificial intelligence

techniques such as Partial Least Squares Regression (PLSR), Support Vector Machine Regression

(SVR), and Random Forests (RF) were applied. They used a contact probe with an internal

light source coupled to a spectroradiometer (Analytical Spectral Devices, Boulder, CO) in the

350–2500 nm spectral range. It has the limitation of potential variations in angles.

Marín-Ortiz et al. (2020) investigated the effects of Fusarium oxysporum infection and

water stress on tomato plants (Solanum lycopersicum) using reflectance spectroscopy with the

Ocean Optics HR2000 equipment operating in the visible (Vis) and near-infrared (NIR) ranges,

380-1000 nm. Samples were obtained from leaves affected by the disease and subjected to water

stress, analyzing physiological changes using techniques such as Principal Component Analysis

(PCA) and Linear Discriminant Analysis (LDA). This approach allowed them to correlate gas

exchange parameters and chlorophyll fluorescence with spectral response, highlighting the

applicability of spectroscopy for early disease detection non-destructively. The study may be

affected by variations in incident angle for obtaining reflection spectra.

Ihuoma and Madramootoo (2019) evaluated the sensitivity of various spectral indices

for monitoring water stress in tomato plants under different irrigation regimes in greenhouse

conditions. Using hyperspectral data, they acquired spectral reflectance from tomato leaves

and calculated indices such as the Normalized Difference Vegetation Index (NDVI) and the

Photochemical Reflectance Index (PRI) centered at 550 nm, among others. The results highlighted

that PRI550, Water Index (WI), and OSAVI were the most sensitive for distinguishing levels

of water stress. They used a miniature fiber optic spectrometer (Blue-wave, Stellar Net Inc.,

FL, USA) in the 200 to 1150 nm spectral range, calibrating the probe at 45° relative to a white

reference standard, at a distance of approximately 64 mm. Spectral canopy measurements were

taken under clear sky conditions between 10:00 and 15:00 h to ensure maximum solar intensity

when the sun was shining directly on the plants. The spectrometer was placed 30 cm above the

plant canopy so that only the canopy was visible. The experiment has the limitation of a specific
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distance and time for sample acquisition.

El-Hendawy et al. (2019) present the potential of existing and novel spectral indices

for estimating leaf water status and grain yield of spring wheat under different deficit irrigation

rates. Using hyperspectral reflectance spectroscopy, they evaluated parameters such as leaf water

potential (LWP), relative water content (RWC), and equivalent water thickness (EWT), as well

as grain yield (GY). Spectral wavelengths sensitive to these parameters were found primarily in

the NIR and SWIR regions, with peaks around 351, 518, and 687 nm in VIS, 762, 974, 1100,

and 1240 nm in NIR.

Neto et al. (2017) employed and validated models to estimate the water and chlorophyll

content in sunflower leaves under progressive water stress. Using reflectance spectroscopy in

the visible/near-infrared (Vis/NIR) region and chemometric techniques, specifically partial least

squares regressions (PLSR), they achieved high determination coefficients and low mean errors

for water (𝑅2 = 0.8386 and -0.40 mg g−1 on a dry basis) and chlorophyll (𝑅2 = 0.8097

and 0.09 mg g−1), respectively. These results indicate that spectrometry has potential as an

alternative method for quantifying the water and chlorophyll status in sunflower leaves. They

used a miniature spectrometer (JAZ-EL350, Ocean Optics, Dunedin, Florida, USA) coupled

with a tungsten-halogen light source in the Vis/NIR wavelength range (500-1039 nm), with a

reflection probe (R400-7-VIS-NIR, Ocean Optics, Dunedin, Florida, USA) to collect the reflected

light from the sunflower leaves, connected to the spectrometer and light source, respectively.

The other end of the probe was inserted into an anodized aluminum holder, positioned vertically

at 90 degrees in relation to the leaves for specular reflectance measurements. The study has a

limitation related to the equipment configuration considering an angle in relation to the sample.

Chemura et al. (2017) evaluated the ability of selected spectral bands in the VIS/NIR

range to predict water content in coffee plants using the random forests algorithm. They conducted

an experiment where coffee plants were exposed to different levels of water stress, and the

reflectance and water content of the plants were measured. Variable selection methods were

used to identify 11, 16, and 22 relevant spectral bands through cross-correlation, reflectance

difference, and reflectance sensitivity, respectively. The selected bands were integrated into the

random forests algorithm to successfully predict water content, demonstrating that reflectance

sensitivity obtained the best performance (r = 0.87, RMSE = 4.91%, and pBias = 0.9%). These

results indicate that water content in coffee plants can be reliably predicted using VIS/NIR

spectroscopy and machine learning algorithms like random forests. Reflectance was measured
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using an Apogee VIS-NIR spectrometer (Apogee Instruments, Inc., Logan, UT, USA) with a

spectral range of 400 to 900 nm. Each reading consisted of an average of three spectral scans,

taken 15 cm above the coffee leaf of interest at a 30-degree angle. The experiment has a limitation

due to variations caused by different angles.

Maimaitiyiming et al. (2017) investigated the early detection of physiological responses

in grapevines under different levels of water stress using reflectance spectroscopy. Conducted in

a vineyard in Mount Vernon, MO, during the 2014 and 2015 growing seasons, they implemented

three irrigation treatments: no irrigation, full irrigation, and intermediate. They analyzed various

spectral indices, including new normalized difference spectral indices (NDSI), to correlate

with stomatal conductance (Gs), a crucial indicator of water stress. The study highlighted that

NDSI(R603,R558) was effective in estimating Gs (𝑅2 = 0.720), outperforming traditional

indices. Additionally, they identified NDSI(R685,R415) as optimal for non-photochemical

quenching (NPQ) (𝑅2 = 0.681). They used partial least squares regression (PLSR) to develop

predictive models for Gs, although NDSI performed better. The Variable Importance in Projection

(VIP) analysis showed crucial wavelengths for estimating Gs. The study was conducted with

an Apogee VIS-NIR spectrometer (Apogee Instruments, Inc., Logan, UT, USA) with a spectral

range of 400 to 900 nm, taken 15 cm above the coffee leaf of interest at a 30-degree angle.

The experiment has a limitation as it was conducted with a specific angle, which could vary at

different angles.

González-Fernández et al. (2015) evaluated spectroscopic methods to estimate water

content in commercial grapevine leaves of three grape varieties (Mencía, Merlot, and Tempranillo)

in vineyards of El Bierzo, Spain. Applying the continuum removal (CR) technique to transform

the spectral data, they used partial least squares regression (PLSR) and ordinary least squares

regression (OLSR) models to fit and validate the data. The results showed that using CR improved

the accuracy of water content estimates, with the most accurate models being those that used

PLSR on the CR-transformed spectrum. They used a portable ASD FieldSpec 4 spectroradiometer

with a plant probe attachment (Analytical Spectral Devices, Inc., Boulder, Colorado, USA),

ranging from 350 to 2500 nm. The experiment has a limitation as it requires a probe to measure

directly on the leaf, which could vary at different angles.
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Table 1 – List of research analysis in plant stress based on Vis-NIR spectroscopy
Research by Spectroscopy

techniques
Spectral
Region
(nm)

Abiotic
Stress
Type

Plant
Species

Infected
Area

Analysis

Tunca et al.
(2023)

Hyperspectral
reflectance

325–1075 Water Sorghum leaves Random Forest (RF), Sup-
port Vector Machine (SVM),
Extreme Gradient Boost-
ing (XGBoost), Redes Neu-
ronales Artificiales (ANN),
Regresión Lineal y Logística

Estrada et al.
(2023)

Reflectance 350-2500 Water
(WS),
water and
heat shock
(WS+T)

Wheat Leaves Statistical analyses, ANOVA
and regression

Zhang et al.
(2021)

Reflectance
VNIR

325–1075 Water tomato Leaves Multilayer perceptron classi-
fier (MLPC) and ORC classi-
fier

Das et al.
(2021)

Reflectance
VNIR

350-2500 Water Rice Leaves Partial Least Squares Re-
gression (PLSR), Support
Vector Machine Regression
(SVR), Gaussian Process Re-
gression (GPR), Multivariate
Adaptive Regression Splines
(MARS), Random Forest
(RF), Stepwise Multiple Lin-
ear Regression (SMLR)

Marín-Ortiz et
al. (2020)

Reflectance 380-1000 Water Tomato leaves Análisis de Componentes
Principales (PCA) y Análisis
Discriminante Lineal (LDA).

Ihuoma and
Madramootoo
(2019)

Reflectance 200–1150 Water Tomato Leaves Spectral vegetation indices

El-Hendawy
et al. (2019)

Hyperspectral
reflectance

350–2500 Water Wheat Leaves Partial least square regres-
sion (PLSR)

Neto et al.
(2017)

Reflectancia
VNIR

500-1039 Water Sunflower Leaves Chemometrics, Specifically
partial least squares regres-
sions (PLSR)

Chemura et al.
(2017)

Reflectance 400-900 Water Coffee leaves Random Forests(RF)

Maimaitiyiming
et al. (2017)

reflectance 350-2500 Water Grapevine Leaves Partial Least Squares Regres-
sion (PLSR) and Variable Im-
portance in Projection (VIP)

González-
Fernández et
al. (2015)

Reflectance 350–2500 Water Grape Leaves Partial least squares regres-
sion (PLSR), ordinary least
squares regression (OLSR)

Source: Own authorship (2024).

2.4 CHLOROPHYLL ESTIMATION BY REFLECTANCE SPECTROSCOPY

Estimating chlorophyll through Reflectance spectroscopy is an important and non-

destructive method for estimating chlorophyll in plants. Many methods for estimating chlorophyll
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using spectral bands have been notably utilized, and the use of machine learning methods is

also showing considerable progress. Studies have conducted a comprehensive review of tech-

niques for estimating chlorophyll content in leaves, comparing destructive and non-destructive

methods, concluding and recommending the use of artificial intelligence and machine learn-

ing techniques such as Random Forest and Support Vector Machine for accurate chlorophyll

estimation (KANDPAL; KUMAR, 2023).

In Table 2, several studies are presented that address chlorophyll quantification using

non-destructive methods based on reflectance spectroscopy applied to the leaves of various

plant species. These methods allow for the measurement of chlorophyll levels using the optical

properties of the leaves to estimate chlorophyll concentration, and the works included cover a

variety of plant species.

Singh et al. (2022) utilized secondary hyperspectral data from maize leaf reflectance,

collected in the spectral range of 350 to 2500 nm in field and greenhouse experiments under

different nitrogen conditions. They measured the water, chlorophyll, nitrogen (N), phosphorus

(P), and potassium (K) content in maize leaves using standard methods. Six machine learn-

ing regression algorithms (Random Forest, Support Vector Regression, k-Nearest Neighbours,

Multilayer Perceptron, Gradient Boosting Regression, and Partial Least Squares Regression)

were employed to develop models that predict these parameters from the leaf reflectance data.

Explainable artificial intelligence methods were used to identify the optimal wavelengths for

each parameter. They found that wavelengths in the short-wave infrared (SWIR) region were

optimal for estimating water content, while the red-edge band was optimal for chlorophyll. For

their experiment, they used a tabletop spectroradiometer (FieldSpec4, Malvern Panalytical Ltd.)

with a contact probe. It has the limitation of using a contact probe, which is subject to specific

distance and angle requirements.

Liu et al. (2022) conducted a detailed study using the plant species Toona sinensis,

known for its economic value and drought resistance. They employed near-infrared reflectance

spectroscopy (NIRS) to non-destructively analyze the plant’s leaves, using a spectral range of

1100 to 2500 nm. This technique allowed the identification of key physiological features such

as chlorophyll content using specific spectral bands like 1420 nm, 1694 nm, and 2160 nm. The

analysis was carried out using partial least squares regression (PLSR), which proved effective in

accurately predicting these indicators. The equipment used included a portable fiber optic contact

probe from a field spectrometer (LF-2500, Spectral Evolution, USA), It has the limitation of
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using a contact probe, which is subject to specific distance and angle requirements.

Li et al. (2021) developed a new modified spectral index (MDR) for estimating equiva-

lent water thickness (EWT) in leaves of various plant species, covering a wide range of growth

stages. The study used multi-angular spectral reflectance measurements in the 400 to 2500 nm

range of leaves from 18 plant species, including trees, shrubs, and lianas. This non-destructive

method employed advanced spectroscopy techniques to capture data from different angles and

conditions, both in the lab and the field, and validated the MDR index as an effective and accurate

tool for estimating water content in leaves, without the need for re-parameterization for each

species. For the experiment, they used a goniometer system, an ASD FieldSpec spectroradiometer

(Analytical Spectral Devices FieldSpec 4, Boulder, CO, USA), taking leaf measurements in the

principal plane from −60∘ to 60∘ (with a 10∘ interval) under three different zenith angles of

incidence (30∘, 40∘, and 50∘), finding a new spectral index tolerant to different angles. The study

did not delve into techniques such as artificial intelligence.

Urbanovich et al. (2021) employed the random forest algorithm to predict chlorophyll

concentrations (chlorophylls a and b) in plant leaves using reflection spectra ranging from 400

to 2500 nm. They used 276 leaf samples from 39 plant species, with a significant focus on

the sycamore maple (Acer pseudoplatanus L.). They evaluated several models, with the best

performance achieved by those using the intensity and derivatives of the reflection spectra in the

visible wavelength range. Comparison with traditional methods highlighted the superior predic-

tive accuracy of the random forest. This study underscores the usefulness of machine learning

methods for the non-invasive assessment of chlorophyll content in plant leaves. The research

refers to the ECOS database, and the equipment used was an ASD FieldSpec spectroradiometer,

with limitations for other conditions of obtaining multi-angular reflection spectra.

Mahajan et al. (2021) used visible near-infrared (VNIR) spectroscopy to assess the

foliar nutrient status of mango (Mangifera indica L.). Leaf samples were collected from mango

orchards in the North Goa and South Goa districts of India during the post-harvest season.

Spectral measurements were taken in the 350 to 1050 nm wavelength range, with preprocessing

techniques such as smoothing and correction applied to improve data quality. Subsequently,

a detailed chemical analysis was conducted to determine the nutrient content in the samples.

They found that a combined approach of PLSR and machine learning models, such as Cubist,

SVR, and Elastic Net, significantly improved predictive accuracy for nutrients like nitrogen,

phosphorus, and potassium, among others. They used a visible near-infrared spectroradiometer
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(GER1500, Spectra Vista Corp., Poughkeepsie, NY, USA) for non-contact observations, and

mango leaf measurements were conducted inside a black box to reduce the impact of scattered

light. The study is limited by measurements at different angles of light incidence for different

angles.

Osco et al. (2019) conducted a study on the hyperspectral response of lettuce plants

(Lactuca sativa L.) under water stress. The researchers used a non-destructive technique to

measure the spectral response of the leaves in the 325 to 1075 nm range. Samples were taken

from the plant leaves, and the data were analyzed using artificial neural networks (ANN). Spectral

bands in the visible region, specifically in the blue (380-460 nm) and red (640-680 nm) ranges,

were crucial for determining chlorophyll content. The study demonstrated that it is possible to

detect early stages of water stress in lettuce plants with high accuracy using this methodology,

which has potential for application in other crops and species in agricultural fields. The spectral

response of the lettuce was measured using a FieldSpec HandHeld ASD spectroradiometer, with

the equipment placed near the leaves at a 45° angle relative to the plant height, and a halogen

lamp positioned at a 45° angle on the other side. The equipment was calibrated with a Lambertian

surface plate (Spectralon® plate). The study is limited by measurements at different angles of

light incidence.

Imanishi et al. (2010) employed a non-destructive method using a spectroradiometer

with a leaf-clip attachment. This device allowed analysis of the reflectance and absorptance

spectra in the 325 to 1075 nm wavelength range of leaf samples. The primary objective was

to develop optimal reflectance and absorptance indices for estimating chlorophyll content,

comparing them with previously published indices. Among the evaluated indices, the Datt

reflectance index and the Ciganda red-edge chlorophyll index stood out for their effectiveness in

accurately estimating chlorophyll content. They used the FieldSpec HandHeld spectroradiometer

with a 10 mm spot size plant probe and leaf-clip attachments (Analytical Spectral Devices Inc.,

USA). The study is limited by measurements at different angles of light incidence.

Ciganda et al. (2009) investigated maize content using a non-destructive extraction

method. The spectral range used (720-730 nm in the red edge and 770-800 nm in the near

infrared), the reflectance-based spectroscopy technique, specifically on collar or ear leaves, the

analysis technique (Red Edge Chlorophyll Index, CIred edge), and the spectral bands used to

determine chlorophyll content (red edge and near infrared). Their objective was to establish

a non-destructive and rapid methodology for estimating total chlorophyll content in a maize
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canopy, based on the chlorophyll content of a single leaf. They used an Ocean Optics USB2000

spectrometer with an Ocean Optics tungsten halogen light source LS-1 and a leaf clip with a

60° angle relative to the bifurcated fiber optic. The study is limited by measurements at different

angles of light incidence.

Gitelson et al. (2003) collected leaves of Norway maple (Acer platanoides L.), horse

chestnut (Aesculus hippocastanum L.), beech (Fagus sylvatica L.), and wild vine (Parthenocissus

tricuspidata L.) to study chlorophyll content. The spectral reflectance of the leaves was measured

in the range of 400 to 800 nm using reflectance spectroscopy. The analyses were based on

regression of spectral indices to determine chlorophyll content, identifying spectral bands

between 520-550 nm, 695-705 nm, 525-555 nm, 695-725 nm, 520-585 nm, and 695-740 nm as

the most relevant for this determination. They used the Hitachi 150-20 spectrophotometer and

the Shimadzu 2101 PC spectrophotometer to obtain the reflectance spectra. The study is limited

by measurements at different angles of light incidence.

Richardson et al. (2002) evaluated non-destructive methods for estimating foliar chloro-

phyll content in paper birch (Betula papyrifera). They used optical methods based on light

absorbance and reflectance, evaluating reflectance indices that correlate with foliar chlorophyll.

They found that these methods provide reliable estimates of relative chlorophyll content, high-

lighting specific reflectance indices that outperformed handheld chlorophyll absorbance meters.

This study emphasizes the usefulness of reflectance spectroscopy as a non-destructive and rapid

tool for assessing chlorophyll status in individual leaves. For the study, they used a UniSpec

Spectral Analysis System (PP Systems, Haverhill, Massachusetts, USA) with a 2.3 mm diameter

foreoptic (0.042 cm²) and a 6.8 W internal halogen lamp. The leaves were held in a black PVC

leaf clip at a 60° angle to the foreoptic. The study is limited by measurements at different angles

of light incidence.

Maccioni et al. (2001) investigated the directional reflectance (R) properties of nadir-

illuminated leaves from four different plant species using a non-destructive method. Spectra were

acquired in the 380 to 780 nm wavelength range. The technique used was directional reflectance

spectroscopy, focusing on logarithmic correlations between chlorophyll content and reflectance

in key spectral bands, such as 550 nm (green band) and near 700 nm (red edge). They found that

normalized internal reflectance in these bands showed a linear relationship with the logarithm of

chlorophyll content, emerging as a more precise index for chlorophyll determination compared

to traditional vegetation index methods. The study may vary under different conditions of light
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incidence.

Datt (1999) studied the visible and near-infrared reflectance properties of leaves from

various Eucalyptus species. They applied a multiple scatter correction technique to reduce

scattering effects in the reflectance spectra, thereby improving chlorophyll content estimations.

They found that the 710 nm reflectance band is sensitive for determining chlorophyll content.

Additionally, they proposed a new index 𝑅850−𝑅710

𝑅850−𝑅680
as an effective indicator for remote estima-

tion of chlorophyll content in plants. Reflectance measurements on leaves were made using a

Geophysical Environmental Research Intelligent Infrared Spectroradiometer (GERIRIS–Mark

IV). The study is limited by measurements at different angles of light incidence.

Gitelson and Merzlyak (1998) studied remote detection of chlorophyll concentration

in leaves of higher plants. They collected leaves of maple, chestnut, cotoneaster, tobacco, fig,

oleander, hibiscus, vine, and rose. They used a non-destructive method of reflectance and

transmittance spectrophotometry in a spectral range of 350 to 1100 nm, with samples taken from

the leaves. They developed algorithms to estimate chlorophyll using reflectance ratios and the

"green" normalized difference vegetation index (NDVI green). They identified spectral bands

of 530 to 630 nm and near 700 nm as highly sensitive for determining chlorophyll content. For

reflectance spectra measurements, they used a Hitachi 150-20 spectrophotometer equipped with

an integrating sphere attachment, which is the limitation concerning their proposal.

Gitelson and Merzlyak (1994) conducted a detailed study to quantitatively estimate

chlorophyll-a content in chestnut (Aesculus hippocastanum L.) and maple (Acer platanoides

L.) leaves during the autumn season. Using the technique of reflectance spectroscopy in the

400-750 nm range, they employed a non-destructive method to extract specific samples from

leaves collected at the Botanical Garden of Moscow State University. During the analysis,

they identified several crucial spectral bands for accurately determining chlorophyll content,

particularly at 550 nm, 705 nm, 675 nm, 400 nm, and above 730 nm. These bands provided

sensitive indicators of changes in chlorophyll content. For reflectance spectra measurements, a

Hitachi 150-20 spectrophotometer equipped with an integrating sphere attachment was used,

which is the limitation concerning our proposal.

Chappelle et al. (1992) developed an algorithm called Ratio Analysis of Reflectance

Spectra (RARS) to remotely estimate the concentrations of chlorophyll a, chlorophyll b, and

carotenoids in soybean leaves. They used reflectance spectra in the range of 300-750 nm, focusing

particularly on the spectral bands at 675 nm, 650 nm, and 500 nm. The leaf samples were analyzed
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using non-destructive techniques. RARS manipulates the reflectance spectra by dividing them by

a reflection spectrum, thereby amplifying the pigment-specific absorption bands. This approach

allowed the correlation of pigment concentrations with the selected spectral bands, thereby

achieving an estimation of the photosynthetic pigments. To obtain the reflectance spectra, they

used a LICOR Model 1800 integrating sphere radiometer with a resolution of 6 nm, The use of

an integrating sphere is a limitation because the setup requires additional equipment.

Table 2 – Chlorophyll Estimation Using Artificial Intelligence
Research by Spectroscopy

techniques
Spectral
Region
(nm)

metodo
de estra-
cion

Plant
Species

Infected
Area

Analysis

Singh et al.
(2022)

Reflectance
Hyperspec-
tral

350-2500 Non-
destructive

Maize Leaves Machine Learning Regres-
sion Algorithms (Random
Forest, Support Vector Re-
gression, k-Nearest Neigh-
bours, Multilayer Perceptron,
Gradient Boosting Regres-
sion, Partial Least Squares
Regression) and Explainable
Artificial Intelligence (XAI)

Liu et al.
(2022)

NIRS 1100 -
2500

Non-
destructive

Toona
sinensis

Leaves Partial least squares regres-
sion (PLSR)

Li et al. (2021) Reflection 400–2500 Non-
destructive

18 plant
species

Leaves Modified spectral index
(MDR)

Urbanovich et
al. (2021)

Reflection 400–2500 Non-
destructive

Sycamore
maple

Leaves For Chl-a, b: Random forest

Mahajan et al.
(2021)

(VNIR) 350–1050 Non-
destructive.

Mango leaves For nutrient status: Regre-
sión de Componentes Prin-
cipales (PCR), Regresión
de Mínimos Cuadrados Par-
ciales (PLSR), Regresión de
Vectores de Soporte (SVR),
Redes Elásticas (Elastic Net)

Osco et al.
(2019)

Reflectance
Hyperspec-
tral

325–1075 Non-
destructive

Lettuce Leaves Artificial Neural Networks
(ANN)

Imanishi et al.
(2010)

reflectance /
Absc

325-1075 Non-
destructive
/ destruc-
tive

Flowering
cherries

Leaves Development of optimal re-
flectance and absorptance in-
dices

Ciganda et al.
(2009)

reflectance 720–730
and
770–800

Non-
destructive

Maize Leaves Red Edge Chlorophyll Index
CIred edge =

(︁
RNIR

Rred edge

)︁
− 1

Gitelson et al.
(2003)

Reflectance /
Absorbance

400-800 Non-
destructive
/ destruc-
tive

Norway
maple
, horse
chest-
nut,
beech
, wild
vine

Leaves Regression analysis using
spectral indices

Source: Own authorship (2024).



39

Table 3 – Chlorophyll Estimation Using Artificial Intelligence (continue)
Research by Spectroscopy

techniques
Spectral
Region
(nm)

metodo
de estra-
cion

Plant
Species

Infected
Area

Analysis

(RICHARDSON
et al., 2002)

Reflectance /
Absorbance

306-1138 Non-
destructive
/ destruc-
tive

Paper birch Leaves SPAD, CCI, Chl NDI,
RII, D730

Maccioni et al.
(2001)

reflectance 380-780 Non-
destructive

Croton, Spot-
ted Eleagnus,
Japanese
Pittosporum,
and Ben-
jamin Fig

Leaves 𝑅780·𝑅710

𝑅780·𝑅680

Datt (1999) Vis-NIRS 400-2500 Non-
destructive

Eucalyptus Leaves Reflectance : 𝐶ℎ𝑙.𝑎 =

0.0885
[︁
𝑅850/𝑅710

𝑅850/𝑅680

]︁2.9564
,

𝐶ℎ𝑙.𝑎 + 𝑏 =

0.126
[︁
𝑅850/𝑅710

𝑅850/𝑅680

]︁2.9065
1st derivative 𝐶ℎ𝑙.𝑎 =
0.0813𝐷1(754)

𝐷1(704) +0.0102,
𝐶ℎ𝑙.𝑎 + 𝑏 =
0.1144𝐷1(754)

𝐷1(704) + 0.0157

2nd Derivative : 𝐶ℎ𝑙.𝑎 =
0.021𝐷2(712)

𝐷2(688) + 0.0242,
𝐶ℎ𝑙.𝑎 + 𝑏 =
0.0295𝐷2(712)

𝐷2(688) + 0.0354

Gitelson and
Merzlyak
(1998)

Reflectance
and transmit-
tance

400-750 Non-
destructive

Chestnut, To-
bacco, Maple,
Cotoneaster

Leaves NDVI = [Rnir - Rgreen]
/ [Rnir + Rgreen]

Gitelson and
Merzlyak
(1994)

Reflectance 400-750 Non-
destructive

Chestnut and
Maple

Leaves For Chl-a
(𝑅750−𝑅705)
(𝑅750+𝑅705)

, 𝑅750

𝑅555
,∫︀ 750

705

[︁
𝑅(𝜆)
𝑅555

− 1
]︁
𝑑𝜆

, 𝑅750

𝑅705
and∫︀ 750

705

[︁
𝑅(𝜆)
𝑅705

− 1
]︁
𝑑𝜆.

Chappelle et al.
(1992)

Reflectance 300-750 Non-
destructive

Soybean Leaves Ratio Analysis of
Reflectance Spectra
(RARS)

Source: Own authorship (2024).

Table 1–3 provides a comprehensive overview of some studies, referencing research

where certain limitations were identified: (i) lack of tolerance for a multi-angular setup; (ii)

accuracy depending on the use of a probe or spectrometer adapter to obtain reflectance spectra;

(iii) measurements dependent on distance for obtaining reflectance spectra; (iv) measurements

reliant on the calibration and measurement angle of the reflectance spectra; (v) lack of exploration

of artificial intelligence tools. Then, the development of a technique not subject to the observed

limitations is intended and will be addressed in this work.
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3 METHODS

The Chapter 3 discusses the methodologies used to create different stress conditions in

wheat leaves. Five different cardboard containers were constructed, each equipped with LED

lighting: red, green, blue, and white light, as well as one container without light. Each box

contains three containers where the seeds are placed after soaking (16 hours) in germination trays.

During seven days, 3 ml, 5 ml and 10 ml of distilled water are added daily. The LED lighting

is controlled by a timer configured to be on for 18 hours and off for 6 hours (MCKINNEY;

SANDO, 1930; KONDRATEVA et al., 2021). Additionally, the boxes are equipped with a DH11

sensor to monitor temperature and humidity in each box. The wheat progresses from an initial

germination stage until it develops leaves. Fresh leaves are then used to obtain reflection spectra

from each sample using an HR4000 spectrometer, resulting in a total of 23 spectra for each

sample through reflectance spectroscopy, generating a total of 345 diffuse reflectance spectra.

The data from the 15 samples were used to calculate the chlorophyll content through absorbance

spectroscopy with the IL-593-Sr spectrophotometer (following the extraction and quantification

methodology to obtain chlorophyll values). The reflection spectra are used to identify water and

light stress, and a regression model based on time series and deep learning was used to estimate

the chlorophyll content.

3.1 EQUIPMENT

This Section 3.1 presents a description of the equipment used, as well as the equipment

configurations made for the experiments. The equipment used belongs to the Laser Laboratory1 at

the Federal University of Technology - Paraná (UTFPR), except for the Digital Spectrophotometer

IL-593-S, which belongs to the Plant Ecophysiology Laboratory - Department of Crop Science

and Plant Protection - Agricultural Sciences Sector - UFPR.

3.1.1 Water Destiller

The water distillation equipment Figure 6 was used for the experiment, as it is of great

importance because the quality of the water used can significantly influence the experimental
1 https://lablaser.jlfabris.com/

https://lablaser.jlfabris.com/
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results. According to the equipment’s characteristics, it can remove a wide range of mineral

salts and impurities from the water. The equipment has a distillation capacity of one liter per

hour, operates at 127 VAC or 220 VAC, has a power of 750 W , a frequency of 50/60 Hz , a

stainless steel tank capacity of 4.0 liters , and a collection reservoir capacity of 4.0 liters (EVOXX

LTDA, 2024). The presence of salts and impurities can alter the results and mask the effects of

stress. Distilled water ensures that the plants are only exposed to the controlled conditions of the

experiment without external interferences that could compromise the integrity of the collected

data.

Figure 6 – Water distillation equipment used in the experiment (Evoxx water distiller operating at 127V or
220V, 750W).

Source: Own authorship (2024).

3.1.2 HR4000 Spectrometer

The HR4000 Spectrometer is an electro-optical device certified with ISO 9001:2008

standards, ensuring quality in both its design and manufacturing processes. It offers compatibility

across various platforms and operating systems, making it versatile and easily accessible in

different environments. The HR4000 spectrometer has an energy consumption of 450 mA and

5 VDC. The HR4000 optical fiber spectrometer has an optical resolution of up to 0.025 nm

(FWHM), sensitivity of 100 photons per count at 800 nm and range from 200 to 1100 nm. It
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connects to a computer through a USB port or a serial port. When connected via USB, the device

is powered by the host computer, eliminating the need for an external power source. It can be

controlled by the OceanView software, a Java-based spectroscopy platform that operates on

Windows, Macintosh, and Linux operating systems.

Figure 7 – HR4000 Spectrometer with internal components and numbered operational steps. The figure
illustrates the complete process from light input to spectral conversion

CCD 
Detector
(UV or VIS)

Filter

SMA Connector Slit

Collimating
Mirror

Grating

Focusing
Mirror

L2 Detector 
Collection Lens

Source: Based on (HR40000, 2012).

The HR4000 spectrometer functions by guiding light through a series of components

starting with the SMA connector, a slit, a filter, a collimator mirror, a grating, a focusing mirror,

an optional detector collection lens, and a CCD detector. These components work together

to ensure that the light is collimated, diffracted, focused, and finally converted into a digital

signal that can be analyzed to determine the spectral characteristics of the incoming light. The

functionality, as detailed in Figure 7, is as follows: The SMA Connector (1): used to secure

the optical fiber to the spectrometer’s input. The light coming from the input fiber enters the

spectrometer’s optical bench through this connector; Slit (2): a rectangular aperture that regulates

the amount of light entering the optical bench, it is mounted directly behind the SMA connector.

The aperture size controls the amount of light and spectral resolution; Filter (3): Light passes

through the filter before entering the optical bench. Bandpass and longpass filters are available

to restrict radiation to certain wavelength regions; Collimating Mirror (4): focuses the light

towards the spectrometer’s diffraction grating. The light enters the spectrometer, passes through

the SMA connector, the slit, and the filter, and then reflects off the collimating mirror towards

the grating; Grating (5): a diffraction grating with different groove densities, allowing to specify
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the wavelength coverage and resolution in the spectrometer; Focusing Mirror (6): receives the

light reflected from the grating and focuses it onto the CCD detector or the L2 detector collection

lens; L2 Detector Collection Lens (7): Focuses light from a tall slit onto the shorter elements of

the CCD detector. It is an optional component that improves efficiency by reducing the effects

of scattered light; CCD Detector (8): collects the light received from the focusing mirror or the

L2 detector collection lens and converts the optical signal into a digital signal. Each pixel in the

CCD detector responds to the wavelength of light that hits it, creating a digital response that the

spectrometer transmits to the application (HR40000, 2012).

3.1.3 Digital Spectrophotometer IL-593-S

A digital spectrophotometer Kasuaki IL-593-S with Wavelength accuracy ±1 nm ,

repeatability ≤ 0.2 nm and range of 190 to 1100 nm, is an automatic device operating in the

UV-VIS range. It offers a backlit LCD screen to display the measured values, USB outputs for

analysis by multiple wavelengths, and DNA/protein analysis, compatible with cuvettes from 5

mm to 100 mm, a spectrophotometer for chemical and biological analysis (KASUAKI, 2024).

The device was used to quantify chlorophyll. The measurements were performed at the Plant

Ecophysiology Laboratory - Department of Crop Science and Plant Protection - Agricultural

Sciences Sector - UFPR.

Figure 8 – Digital spectrophotometer Kasuaki IL-593-S, with a wavelength range of 190 to 1100 nm, (KA-
SUAKI, 2024).

Source: Based on (KFEQUIPAMENTOS, 2024).
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3.1.4 SpectraSuite Software

Java-based spectroscopy software, capable of controlling any USB spectrometer from

Ocean Optics equipment, facilitates the management of multiple USB spectrometers, each with

different acquisition parameters, with the ability to display spectra in real-time (Ocean Optics,

Inc., 2007). Important parameters:

• Integration Time: Determines the light detection period. The ability to increase this time

is useful for weak sources.

• Scans to Average: Sets the number of spectral acquisitions before averaging and send-

ing the results to SpectraSuite. Its use reduces the noise without impairing the spectral

resolution.

• Boxcar Width: Averages data from adjacent points on the CCD, smoothing the graph. Its

use reduces the noise, however impairing the spectral resolution.

Figure 9 – SpectraSuite Software

Source: Own authorship (2024).
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3.1.5 Reflectance Spectroscopy Configuration

We used the reflectance spectroscopy configuration to non-destructively analyze the

chemical properties of our wheat leaves. The amount of reflected light will allow us to predict

the type of stress the leaves were subjected to, as well as the total chlorophyll content, through

diffuse reflection spectra in samples taken from multiple angles.

Figure 10 – Physical implementation of the reflectance spectroscopy setup in the laboratory Laser at UTFPR.
The configuration includes a halogen light source, a silver mirror, an iris diaphragm, and a
lens. Light is directed onto a sample in a Petri dish, and the reflected light is collected by a fiber
collimator, connected to an HR4000 spectrometer for analysis
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Source: Own authorship (2024).

The equipment configuration, as shown in Figure 10, includes a halogen white light

source (Komlux HL7, power consumption 127 VAC and 75 W). The light is incident on a silver

mirror (ThorLabs) to direct it towards the iris diaphragm (ThorLabs, 2.5 cm diameter) and lens

(ThorLabs, 10.0 cm focal length), which together direct the light towards the sample contained

in a Petri dish with an area of 55 cm2 (SCD10100, Sorfa) against a black background. The

reflected light is collected by a fiber collimator (F220SMA-532, ThorLabs) connectors, 350 -

700 nm spectral range and a focal length of 𝑓 = 10.90 mm. This fiber collimator is connected
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to an optical fiber (F600-VIS-NIR, StellarNet), which, in turn, is connected to a spectrometer

(HR4000, described in Subsection 3.1.2) acting as an interrogator to collect the light reflected

from the sample.

In Figure 11, the diagram of the Reflectance Spectroscopy Configuration implemented in

the experiment is shown. For reflection spectra under different stress conditions, the spectra were

obtained using the SpectraSuite software described in Subsection 3.1.4. The spectra data was

saved in text files ("txt" format) for subsequent analysis using Python in the Colab environment2.

Figure 11 – Diagram of the reflectance spectroscopy setup in the laboratory Laser at UTFPR. The config-
uration includes a halogen light source, a silver mirror, an iris diaphragm, and a lens. Light is
directed onto a sample in a Petri dish, and the reflected light is collected by a fiber collimator,
connected to an HR4000 spectrometer for analysis
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Source: Own authorship (2024).

To calculate the percentage of relative reflectance of the samples at a specific wavelength,

the software uses Equation 2, where (𝐷𝜆) is the dark background intensity (or dark intensity) at

the wavelength. For the experiment, the Petri dish with a black background was used. (𝑅𝜆), the

Reflection S]pectrum, is taken with light incident on the Petri dish with a white background. (𝑆𝜆)

is the intensity of the sample at each wavelength. To calculate the percentage of relative diffuse

reflectance, first, the dark background is corrected by subtracting 𝐷𝜆 from 𝑆𝜆 and 𝑅𝜆. The

intensity ratio is obtained by dividing the corrected sample intensity by the corrected reference

intensity. To get the percentage value, multiply by 100 (Ocean Optics, Inc., 2005), resulting in
2 https://colab.research.google.com/

https://colab.research.google.com/
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the function that gives us the corrected spectrum in percentage:

%𝑅𝜆 =
𝑆𝜆 −𝐷𝜆

𝑅𝜆 −𝐷𝜆

× 100%. (2)

3.1.6 Absorbance Spectroscopy Configuration

This section details the implementation of absorbance spectroscopy tests, where the

HR4000 spectrometer described in Subsection 3.1.2 was used. Figure 12 shows the actual

laboratory setup for absorbance spectroscopy, including a diagram of the equipment used for the

experiment (Figure 13) and the corresponding Equation 3.

Figure 12 – Physical implementation of the absorbance spectroscopy configuration. A halogen light source
(Philips 12345SL, 3100 K) and two optical fibers connected to a cuvette holder (CUV-ALL-UV,
Ocean Optics) with 4.5 mL polystyrene cuvettes (K42-045, Olen) and the UV-Vis spectrometer
(HR4000, Ocean Optics)
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Source: Own authorship (2024).

Based on the principle that atoms, molecules, or ions absorb specific wavelengths of

light, the following equipment configuration was used for this work. For UV-Vis spectroscopy,

a standard halogen light source (Philips 12345SL, 3100 K) was employed. Two optical fibers

with a core diameter of 200 µm (P200-2-UV-Vis, Thorlabs) were used for light transmission.
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A cuvette holder (CUV-ALL-UV, Ocean Optics) was used to connect the two fibers, and the

cuvettes used during the analyses were polystyrene with a volume of 4.5 mL (K42-045, Olen).

These were connected to a UV-Vis fiber optic spectrometer (HR4000, Ocean Optics), which

allows for obtaining UV-Vis optical spectra in the range between 200 nm and 1100 nm. The

configuration used for UV-Vis spectroscopy analyses can be seen in Figure 13.

Figure 13 – Diagram of the absorbance spectroscopy configuration. A halogen light source (Philips 12345SL,
3100 K) and two optical fibers connected to a cuvette holder (CUV-ALL-UV, Ocean Optics)
with 4.5 mL polystyrene cuvettes (K42-045, Olen) and the UV-Vis spectrometer (HR4000, Ocean
Optics)
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Source: Own authorship (2024).

To obtain absorption spectra, the software performs the following steps: first, we

measure 𝑅𝜆, which is the intensity of light transmitted through the cuvette with acetone 80%,

as shown in Figure 14.a and 15. For 𝐷𝜆, which represents the signal measured in the absence

of incident light, the light source is blocked in the experiment (Figure 14b), resulting in the

spectrum shown in Figure 15. It is important to subtract this background signal to correct for

background noise and obtain an accurate measurement of the transmitted signal. The software

provides the spectrum after the respective calculation via its graphical interface (Ocean Optics,

Inc., 2005).

The software described in section 3.1.4 acquires the reflection spectrum and the dark

spectrum (Figure 15) to provide the absorption spectrum.
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Figure 14 – Absorption spectra acquisition process. To obtain the absorption spectra, the software performs
the following steps: First, the intensity of light transmitted through a cuvette with 80% acetone
(𝑅𝜆) is measured, as shown in Figure 14(a). For 𝐷𝜆, the signal measured in the absence of incident
light, the light source is blocked (Figure 14(b))
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Source: Own authorship (2024).

Figure 15 – Graph of the spectrum for the intensity of light transmitted through a cuvette with 80% acetone
(𝑅𝜆), starting from Figure 14(a). The dark reference spectrum, shown in Figure 14(b), represents
the spectrum obtained under these conditions for 𝐷𝜆, which indicates the absence of incident
light

Source: Own authorship (2024).

Equation 3 is used to calculate optical density (OD), which is a measure of how much a

sample absorbs light at a specific wavelength. The equation is based on the Lambert-Beer law

(SWINEHART, 1962). The general formula for absorbance (A), previously known as optical

density, provides a way to calculate the OD of a sample at a specific wavelength, taking into

account both the background signal and the reference signal to obtain a more accurate and
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reliable measure of OD (Ocean Optics, Inc., 2005). The equation is:

𝐴𝜆 = − log10

(︂
𝑆𝜆 −𝐷𝜆

𝑅𝜆 −𝐷𝜆

)︂
. (3)

3.2 ENVIRONMENTAL CONSTRUCTION FOR WHEAT STRESS

In this section 3.2, environments were developed to create different stress conditions.

It includes five cardboard containers, four with different types of LED lighting (green, red,

blue, and white) and one container without lighting. The on/off control is managed by a timer

controller. It includes five DHT11 sensors to monitor temperature and humidity throughout the

experiment in each container.

3.2.1 Light Stress

The five cardboard containers have the following dimensions: 36 x 35 x 23 cm, with a

lid of 36.5 x 36.5 x 4 cm. LED strips of 12V DC, approximately 2 meters in length, were adhered

in a spiral pattern on the top of the lid. The setup is shown in Figures 16 and 17.

Figure 16 – Stress containers with different LED lighting types: Green LED, Red LED, Blue LED, No LED,
and White LED

Stress Green LED
Stress Red LED

Stress Blue LED
Stress Dark

Stress White LED

Source: Own authorship (2024).
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Figure 17 – LED strips installed on the lids of the containers, arranged in a spiral pattern.

Source: Own authorship (2024).

The spectral characteristics of the LED sources were measured with the HR4000

spectrometer. For the red LED, the peak wavelenth is at 630 nm. For green LED emission, the

peak wavelength is at 510 nm, and for blue LED emission, it is at 470 nm, as shown in Figure 18.

Figure 18 – Spectra of LED lights in containers
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3.2.1.1 Lighting Time Control

A digital timer is connected to a power distributor responsible for electrical current

distribution. The power distributor is connected to various power supplies that convert 220VAC

to 12VDC. Figure 19 also shows the time configuration of the digital timer, providing a detailed

flow diagram that allows for understanding and visualizing how the time intervals for turning the

LED strips on and off are programmed throughout the 7-day experiment.

Figure 19 – Diagram of the digital timer connected to a power distributor. Visual configuration for observing
the time intervals in which the LED strips are turned on and off during the 7-day experiment.
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Source: Own authorship (2024).

3.2.2 Water Stress

In the experiment, wheat seeds were first soaked in distilled water for 18 hours

(CHATTHA, 2017), washed and cleaned. Twenty seeds were placed in each of the five cardboard

containers, each with three plastic containers and germination paper at the base. Daily, the seeds

were stressed with 3 ml, 5 ml, or 10 ml of distilled water for 7 days. The distilled water was

obtained from an Evox distiller described in section 3.1.1. Figure 20 shows the containers and

distribution of the experiment, with each cardboard container having the respective light stress,

totaling 15 different stress conditions.
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Figure 20 – Stress Distribution in Containers for Water Stress Experiments (3 ml, 5 ml, 10 ml)

Source: Own authorship (2024).

3.2.3 Stress Conditions

Table 4 presents the details of fifteen stress conditions across different containers in the

experiment. Each stress condition is characterized by two main variables: the color of LED light

used (green, red, blue, or white) or light (dark) and the amount of water applied (in milliliters).

The container number where each stress condition was carried out is also listed.

Table 4 – Stress conditions and details for each container. The conditions include the type of light (LED)
applied and the amount of water stress (in ml) for each container.

Stress Light LED Water Stress (ml) Container
Stress condition 01 Green 3.00 01
Stress condition 02 Green 5.00 01
Stress condition 03 Green 10.00 01
Stress condition 04 Red 3.00 02
Stress condition 05 Red 5.00 02
Stress condition 06 Red 10.00 02
Stress condition 07 Blue 3.00 03
Stress condition 08 Blue 5.00 03
Stress condition 09 Blue 10.00 03
Stress condition 10 Dark 3.00 04
Stress condition 11 Dark 5.00 04
Stress condition 12 Dark 10.00 04
Stress condition 13 White 3.00 05
Stress condition 14 White 5.00 05
Stress condition 15 White 10.00 05



54

3.2.4 Temperature and Humidity Monitoring

The components used for the implementation of the monitoring system include five

DHT11 sensors distributed as shown in Figure 21. These sensors were chosen for their ability

to measure temperature and humidity in a single electronic component. An Arduino board was

used to process the analog signals from the DHT11 sensors. It was programmed to read the data

from the sensors at one-minute intervals and send it to the Raspberry Pi for storage.

Figure 21 – Distribution of DHT11 Sensors for Monitoring Temperature and Humidity of Containers for
Plant Stress
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Source: Own authorship (2024).

Figure 22, shows the implementation of the system and its connections. The DHT11

sensors were connected to the Arduino board following the appropriate pin scheme and configured

to continuously measure the temperature and humidity in the experimental environment. The

Arduino board was programmed to read data from the DHT11 sensors every minute. This

code also handled sending the data to the Raspberry Pi via a serial connection. Integration

with the Raspberry Pi was achieved using Python scripts to receive and store the data from the

Arduino board. The temperature and humidity monitoring system ran throughout the study period,

recording data every minute, allowing for a detailed dataset on the environmental conditions in

the experimental setup.
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Figure 22 – Implementation of a monitoring system in stress containers for plants, composed of DHT11
sensors, Arduino Uno, Raspberry Pi 3B+

Source: Own authorship (2024).
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3.3 DATABASE OF REFLECTION AND ABSORPTION SPECTRA

For the construction of the database of reflection and absorption spectra according to the

equipment configurations described in Subsection 3.3.1 and 3.3.2, we first obtained the diffuse

reflection spectra by modifying the angle at which the light strikes the sample. For the absorption

spectra, we constructed it considering two types of processes to obtain the total chlorophyll from

the samples, which are detailed in the following subsections.

3.3.1 Acquisition of Reflection Spectra

The spectra were obtained in a multi-angular setup as shown in Figure 23, varying the

angle of the petri dish for a fixed light beam, generating diffuse reflected light. For each sample,

23 diffuse reflection spectra were taken at different light incidence angles, for 15 different stress

conditions, making a total of 345 spectra.

Figure 23 – Obtaining samples from different positions and angles
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Source: Own authorship (2024).

3.3.2 Methodology for Chlorophyll Extraction and Quantification

Through absorbance spectroscopy, the chlorophyll content can be obtained. In our

experiment, using fresh leaves as samples, the following procedure was carried out to obtain

the chlorophyll content (mg.g−1 FW). 5 ml of acetone 80% were placed in a mortar and the
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leaves were macerated using a pestle. The solution was then centrifuged at 12,000 rpm for 10

minutes, and the supernatant was transferred to a cuvette (ARNON, 1949). For quantification, two

different devices were used. First, the equipment (digital spectrophotometer IL-593-S ) described

in section 3.1.3 was used. Readings were taken in the spectrophotometer at wavelengths of

645 nm and 663 nm. Afterward, the liquid samples were preserved on ice to be measured later by

the equipment (HR4000 spectrometer) described in 3.1.2, a spectrometer that returns intensities

over a range of wavelengths.

Using the values obtained from the spectrophotometer and spectrometer, chlorophyll

content can be quantified following the protocol described in (WITHAM et al., 1971). Based on

these optical density (OD) readings, the contents of chlorophyll a, b, and total will be calculated

in mg/g, independently for each device:

Chlorophyll a =
12.7 · Abs663− 2.69 · Abs645

1000 · FW
· 𝑉 (mg · g−1), (4)

Chlorophyll b =
22.9 · Abs645− 4.68 · Abs663

1000 · FW
· 𝑉 (mg · g−1), (5)

Total chlorophyll =
8.02 · Abs663 + 20.2 · Abs645

1000 · FW
· 𝑉 (mg · g−1), (6)

in which:

• Abs645 and Abs663 are the optical densities at 645 and 663 nm, respectively;

• V is the volume in 𝑚𝑙 acetone 80% ;

• FW is the fresh weight of material used in the extract.

3.4 PRE-PROCESSING

In Section 3.4, we address various techniques and methods for processing and analyzing

spectroscopic data. It begins with the selection of the optical data range from the HR4000

spectrometer, limiting the data from 400 nm to 780 nm for pigment analysis. It also describes

the procedure used to obtain integer wavelengths (645 nm and 663 nm) in the spectrometer

described in Subsection 3.1.2, which will be used for the calculations required in Subsection 3.3.2.

Techniques such as the Savitzky-Golay filter for smoothing spectral signals and Continuum
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Removal are also addressed, which highlight specific spectral features by normalizing each

spectrum by its maximum reflectance value, eliminating unrelated intensity variations. To correct

systematic variations due to optical interferences, techniques such as Multiplicative Scatter

Correction (MSC), which adjusts spectra by removing scattering effects, and Standard Normal

Variate (SNV), which standardizes spectral data to correct dispersion variations, are applied.

These techniques are used as preprocessing in the spectral data.

3.4.1 Processing Spectral Data by Wavelength Intervals

The first step in data processing will be the selection of the data range. According to

(HECHT, 2017), Maximum Wavelength of the Band red color is defined at 780 nm. Knowing

that the analysis is for pigment, and also considering (BAURIEGEL et al., 2011; WENDAR et

al., 2014), they used a minimum range of 400 nm for their analyses, so we limit our data to the

range of 400 nm to 780 nm.

According to the methodology for quantifying chlorophyll described in Subsection 3.3.2,

two specific integer wavelengths are required for the respective calculation (645 nm and 663 nm).

In our experiment, data was obtained in wavelength steps of 0.27 nm within the spectral range of

400 to 780 nm; therefore, the procedure to set the wavelengths in steps of 1 nm is necessary. The

wavelength values obtained through processing in Python apply functions to extract the integer

part and return the average intensities at each integer wavelength.

• Grouping columns by their integer values: For each column 𝑗, we determine its group

based on the integer part of the value in the first row:

Group(𝑘) = {𝑗 | ⌊wavelength𝑗⌋ = 𝑘}.

• Calculating the mean for each group of columns: For each row 𝑖 and each group 𝑘:

�̄�𝑖𝑘 =
1

|Group(𝑘)|
∑︁

𝑗∈Group(𝑘)

R𝑖𝑗,

where |Group(𝑘)| is the number of columns in group 𝑘.
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Figure 24 – Interpolated Wavelength Data
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Source: Own authorship (2024).

3.4.2 Savitzky-Golay Filter

The Savitzky-Golay filtering method is a signal processing technique used in spec-

troscopy to improve the accuracy of data without distorting the essential features of the original

spectra. This technique smooths the signal while maintaining an appropriate signal-to-noise ratio.

It is especially effective in preserving the high-frequency components of the signal and peaks in

spectra (SAVITZKY; GOLAY, 1964; ZAHIR et al., 2022).

For a data point 𝑦𝑖, the Savitzky-Golay filter fits a polynomial of order 𝑝 to all data

points within a window of length 2𝑚+ 1 centered on 𝑦𝑖. The general equation for the smoothed

value 𝑦𝑖 is:

𝑦𝑖 =
𝑚∑︁

𝑗=−𝑚

𝑐𝑗𝑦𝑖+𝑗,

where:

• 𝑦𝑖 is the smoothed value at point 𝑖;

• 𝑦𝑖+𝑗 are the data points within the window;

• 𝑐𝑗 are the filter coefficients, which depend on the order of the polynomial 𝑝 and the window

size 2𝑚+ 1.
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3.4.3 Continuum Removal (CR)

The Continuum Removal technique is used in spectral analysis to highlight specific

spectral features of a spectrum. This technique normalizes each spectrum by dividing it by

its maximum value, allowing for clearer observation of the features of interest by eliminating

intensity variations that are not related to the spectral features (CLARK et al., 1990).

Given an original spectrum 𝑅(𝜆), the Continuum Removal process is carried out by

dividing the signal value at each point by the maximum value max(𝑅(𝜆)) of the entire spectrum.

This process is fundamental in spectral analysis to eliminate the continuum or background

component and is expressed as:

𝑅Norm(𝜆) =
𝑅𝜆

max(𝑅(𝜆))
,

where:

• 𝑅(𝜆) is the reflectance at wavelength 𝜆;

• max(𝑅(𝜆)) is the maximum reflectance value across the entire spectrum.

3.4.4 De-trending (DT)

De-trending is a process used to remove unwanted trends or variations from spectra,

particularly useful when dealing with nonlinear baselines or systematic variations. To adjust

or smooth the original spectrum 𝑅(𝜆), the goal is to find a function �̂�(𝜆) that represents the

adjusted spectrum (ZAHIR et al., 2022; KIYONO; TSUJIMOTO, 2016), and is expressed as:

�̂�(𝜆) = 𝑅(𝜆)− DT(𝑅(𝜆)),

where:

• DT(𝑅(𝜆)) is the function resulting from the de-trending process;

• The result �̂� is a matrix of the same size as 𝑅, where each row 𝑅𝑖 has been detrended (the

linear trend has been removed).

3.4.5 Normalization of Reflectance Spectra by Area

Normalization by area in the reflection spectrum is performed by dividing each re-

flectance value by the area under the curve corresponding to that row within the analyzed
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range (JIAO et al., 2020). In a specific wavelength range (𝑊min to 𝑊max), the equation for

Area-Normalized Reflectance is applied:

Area-Normalized Reflectance(𝑖, 𝜆) =
𝑅(𝑖, 𝜆)∫︀𝑊max

𝑊min
𝑅(𝑖, 𝜆) 𝑑𝜆

, (7)

where:

• 𝑅(𝑖, 𝜆) is the reflectance value for sample 𝑖 at wavelength 𝜆;

•
∫︀𝑊max

𝑊min
𝑅(𝑖, 𝜆) 𝑑𝜆 is the area under the reflectance curve for sample 𝑖 over the wavelength

range from 𝑊min to 𝑊max.

3.4.6 Standard Normal Variate (SNV)

This is a preprocessing technique used to correct scattering variations and improve

comparability between different samples. This technique is particularly useful in spectroscopy,

allowing for the correction of samples. SNV standardizes the spectral data by adjusting for

differences in baseline shifts and scaling effects due to sample presentation (ZAHIR et al., 2022;

BARNES et al., 1989). The SNV procedure is applied to each spectrum in a collection of spectra

individually, minimizing differences due to scattering and other unwanted variations (YANG et

al., 2020; MISHRA et al., 2020). The mathematical representation is:

SNV(𝑋𝑖) =
𝑋𝑖 − �̄�

𝜎𝑋

, (8)

where:

• 𝑋𝑖 is the signal intensity in the original spectrum at point 𝑖,

• �̄� is the mean of the signal intensities across the entire spectrum,

• 𝜎𝑋 is the standard deviation of the signal intensities in the spectrum.

3.4.7 Multiplicative Scatter Correction (MSC)

This method can be used as a preprocessing step to eliminate optical interferences

(MALEKI et al., 2007), used to correct the scattering effect in measured spectra resulting

from physical variations in the samples (CHEN; THENNADIL, 2012). First, a straight line (a

first-degree polynomial) is fitted between the mean spectrum and the current spectrum.
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This correction normalizes each point in the current spectrum, eliminating systematic

variations due to light scattering. The equation for MSC correction is:

corrected_spectrum[𝑖] =
spectrum[𝑖]− fit[1]

fit[0]
,

where:

• spectrum[𝑖] is the value of the original spectrum at position 𝑖;

• fit[1] is the intercept of the linear fit;

• fit[0] is the slope of the linear fit.

3.5 MACHINE LEARNING MODEL

Figure 25, illustrates the comprehensive process of training a supervised classification

model in the context of machine learning. The flow begins with the selection of relevant data

from the initial dataset, followed by a series of preprocessing techniques to enhance data quality.

Subsequently, the preprocessed data are concatenated to form a combined dataset (all possible

options and their individual responses as performed by the researchers Urbanovich et al. (2021)).

This new dataset is then split into 80% for training and 20% for testing. The model is trained on

the training set and then evaluated on the testing set to determine its performance. Finally, the

evaluation results are analyzed to understand the effectiveness of the model and make necessary

adjustments. This process ensures the creation of a model with various types of preprocessing,

selecting the one that achieves the best result.

Figure 25 – Overview of the classification process
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Figure 26, shows a schematic of the process for selecting the best preprocessing for

a regression model. First, the dataset is selected and subjected to several preprocessing stages,
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including the Savitzky-Golay filter, continuum removal (Continuum Removal), detrending

(Detrending, DT), area normalization, standard normal variate (SNV), and multiplicative scatter

correction (MSC). Then, the preprocessed data are divided into two subsets: 80% for training

and 20% for testing. The training data are used to train the regression model, while the testing

data are used to evaluate the model’s performance. Finally, the evaluation results are analyzed to

determine the effectiveness of the regression model.

Figure 26 – Overview of the regression process
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3.5.1 Classification Models

We chose MiniRocket, a variant of the Random Convolutional Kernel Transform

(ROCKET), as our classification model. MiniRocket offers several advantages over other methods.

Used in time series classification applications, MiniRocket simplifies the process by eliminating

the need to normalize input time series, making it easier to apply across various fields without

compromising performance (DEMPSTER et al., 2021).

3.5.1.1 MiniRocket Classifier

Tsai is an open-source deep learning package developed on top of PyTorch and fast.ai,

specializing in advanced techniques for time series tasks such as classification and regression

(OGUIZA, 2023). MiniRocket significantly improves the efficiency of the process by adjusting

specific convolutions that maintain the effectiveness of the original method but with much

faster computation speeds. This approach uses feature transformations based on random con-

volutions over the time series, followed by linear classifier training (DEMPSTER et al., 2021;

BONDUGULA et al., 2023).



64

MiniRocket uses the features of a small and fixed set of two-value kernels, as well as the

proportion of positive values (PPV) index, to significantly improve the transformation through

four fundamental optimizations.

i. Calculate the PPV for 𝑊 and −𝑊 simultaneously: Where 𝐶 = 𝑋 *𝑊 − 𝑏, the PPV is

given by:

𝑃𝑃𝑉 (𝐶) =
1

𝑛

∑︁
[𝑐 > 0].

The PPV is between 0 and 1, and its complement, the proportion of negative values (PNV),

is defined as 1− PPV(𝑋 *𝑊 − 𝑏) = PNV(𝑋 *𝑊 − 𝑏). Therefore, calculating the PPV

also yields the PNV, and vice versa, as both are equivalent. The convolution operation is

associative, meaning 𝑋 * −𝑊 = −(𝑋 *𝑊 ). Thus, by calculating the PPV for a kernel

𝑊 , the PNV for −𝑊 is also obtained. In practice, it is only necessary to perform the

convolution for 𝑊 , as the inverted kernel −𝑊 is implicit. MiniRocket uses only kernels

with weights 𝛼 = −1 and 𝛽 = 2, avoiding the use of inverted kernels with weights 𝛼 = 1

and 𝛽 = −2 (DEMPSTER et al., 2021; DEMPSTER, 2022).

ii. Leverage the convolution output to generate multiple features, by using the same kernel

and dilation to extract various features. With a kernel 𝑊 and a dilation 𝑑, 𝐶 = 𝑋 *𝑊𝑑 is

initially calculated. Subsequently, the output of this convolution, 𝐶, is used to generate

different features for various bias values. In this way, multiple features can be obtained

with the computational cost of a single convolution operation (DEMPSTER et al., 2021;

DEMPSTER, 2022).

iii. Avoid multiplications in the convolution operation. Restricting the kernel weights to two

values, 𝛼 and 𝛽, allows replacing multiplications in the convolution with additions. This

is achieved by precomputing 𝐴 = 𝛼𝑋 and 𝐵 = 𝛽𝑋 , thus eliminating the need for

multiplications during the convolution (DEMPSTER et al., 2021; DEMPSTER, 2022).

iv. Process all kernels (almost) at once for each dilation. By restricting the kernel weights

to two values, it is possible to calculate almost all kernels simultaneously for each dila-

tion, using the convolution output, 𝐶𝛼, with 𝛼 = −1 for all weights, and adjusting 𝐶𝛼

(DEMPSTER et al., 2021; DEMPSTER, 2022).
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3.5.2 Regression Models

For regression models in the analysis of spectral data, two main approaches have

been considered: MiniRocket, which is based on time series, and Deep Learning, due to the

complexity of the data analyzed. MiniRocket is a powerful and efficient tool for time series

regression, standing out for its ability to handle large volumes of data in shorter times. On the

other hand, in our experiment, Deep Learning models have also been considered, offering the

advantage of identifying complex and non-linear patterns in spectral data, which is crucial for

the analysis in our proposal.

3.5.2.1 MiniRocket Regressor

Minimally Random Convolutional Kernel Transform (MiniRocket) applications demon-

strate that it surpasses traditional approaches in both accuracy and efficiency, achieving very

acceptable scores in short times of seconds. The algorithm shows robustness even in data-limited

scenarios (ALAGOZ, 2024). MiniRocket is adapted as a regressor by transforming the input

signal into a high-dimensional feature vector (9,996 dimensions), similar to its use in classifi-

cation. The process involves dilated convolutions with predefined kernels, applying selected

dilations to capture different temporal scales. The results are compared with threshold values,

generating binary vectors. These are averaged to produce a feature descriptor. This descriptor is

then used as input for a regression model, allowing the prediction of continuous values in time

series (ALAGOZ, 2024; DEMPSTER et al., 2021; OGUIZA, 2023; SCHLEGEL et al., 2022).

MiniRocket outperforms Rocket in terms of speed, being up to 75 times faster on

large datasets and almost deterministic while maintaining nearly identical accuracy levels. This

method offers unparalleled efficiency compared to other methods with similar accuracy, including

Rocket, making it significantly faster. Additionally, MiniRocket achieves superior accuracy

compared to methods with comparable computational costs (ALAGOZ, 2024; DEMPSTER et al.,

2021; OGUIZA, 2023; SCHLEGEL et al., 2022). The parameters used were: greater_is_-

better=False, indicating that lower MSE values are better, and mean_squared_error,

where the model will focus on minimizing the mean squared error during training and will be

evaluated on how well it minimizes this error.
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3.5.2.2 DNN Regressor

DNNs can approximate complex functions through deep non-linear network structures,

enabling them to learn essential features from datasets, also due to their ability to identify

patterns in complex datasets (CAO et al., 2019; GOODFELLOW et al., 2016). In the DNN

architecture, we encounter terms such as the cost function (or loss function), which is intended for

statistical estimation. Minimizing this cost function facilitates obtaining a maximum likelihood

estimate (GOODFELLOW et al., 2016). Optimization in the training of deep models is crucial

as it allows for adjusting model parameters to improve performance. Additionally, dropout is

used to prevent overfitting. Due to their high capacity to learn and represent complex tasks

(GOODFELLOW et al., 2016), deep models also benefit from the Rectified Linear Unit (ReLU)

activation function, which helps the model learn useful representations of the input data (HE et

al., 2018; GOODFELLOW et al., 2016). The approximation capability of DNNs with ReLU is

analyzed through the following Equation 9:

DNN𝑚
1 =

{︃
𝑓 : 𝑓 =

𝑚∑︁
𝑖=1

𝛼𝑖ReLU(𝑤𝑖𝑥+ 𝑏𝑖) + 𝛽

}︃
, (9)

where 𝛼𝑖, 𝑏𝑖, 𝛽 ∈ R and 𝑤𝑖 ∈ R1×𝑑. This equation describes the set of functions produced by

a deep neural network (DNN) with a single hidden layer, where ReLU(𝑤𝑖𝑥 + 𝑏𝑖) acts as the

activation function (HE et al., 2018).

In Figure 27, the DNN model architecture is illustrated, consisting of 12 principal

components (PCA) as input and several dense layers with ReLU activation functions and dropout

layers to prevent overfitting. The architecture includes an initial dense layer with 256 units,

followed by dense layers with 64 and 32 units, and a single-unit output layer. The model is

compiled with the RMSprop optimizer and a learning rate of 0.001, minimizing the mean squared

error (MSE) and evaluating with mean absolute error (MAE) and mean squared error (MSE)

metrics. It is trained for 700 epochs with a batch size of 32 and validated using a separate dataset.
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Figure 27 – Deep Learning Model Architecture with ReLU, Dropout 0.2, and dense layers (256, 64, 32
neurons) for Chlorophyll prediction
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3.6 EVALUATION METRICS

In predictive models, evaluating their performance in both classification and regression

tasks is of utmost importance. For classification models, we used metrics such as accuracy,

precision, recall, and F1-score, as well as Macro Average, Weighted Average, and the confusion

matrix, to measure the effectiveness of the models in making correct categorizations. In contrast,

for regression models, we used Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),

and the coefficient of determination (R²), which quantify the variation between predicted values

and actual values. Both categories of metrics ensure the correct evaluation of model performance,

allowing for a precise assessment of its ability in both classification and regression tasks.

In our study, we also considered the measurement of chlorophyll using two different

devices. To evaluate the relationship between the measurements obtained with each device, we

employed Pearson’s correlation, a statistical measure that quantifies the strength and direction of

the linear relationship between the results.
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3.6.1 Evaluation Metrics for Model Classifiers

In the study, metrics for multiclass classifiers were considered (HOSSIN; SULAIMAN,

2015). Our samples contain three levels of water stress as well as five types of illumination to

which the wheat leaves were subjected. Additionally, the experiment ensured that the classes

were balanced, meaning that the same number of reflection spectra were obtained for each

sample. According to this, the following metrics were used:

• Accuracy: A metric used to measure the performance of a classifier (PETHE et al., 2024;

ZHANG et al., 2020; RIZWAN et al., 2019).

Accuracy =
True Positives + True Negatives

True Positives + False Positives + False Negatives + True Negatives
.

• Precision: Measures the proportion of correctly predicted positive patterns relative to the

total predicted positive patterns, defined as the ratio between true positives and the total

predicted positives (PETHE et al., 2024; RIZWAN et al., 2019). It is calculated as:

Precision =
True Positives

True Positives + False Positives
.

• Recall: A performance measure defined as the proportion of true positives (TP) relative

to the total of true positives (TP) and false negatives (FN) (PATHARKAR et al., 2024;

ZHENG; JIN, 2020).

Recall =
True Positives

True Positives + False Negatives
.

• F1-Score: The weighted harmonic mean of Precision and Recall (HOSSIN; SULAIMAN,

2015; PETHE et al., 2024).

F1-Score =
2× Precision × Recall

Precision + Recall
.

• Confusion Matrix: A comparison of estimated class hits and errors with the actual class

for each instance in the dataset, allowing us to analyze how the model performs in each

specific class (KRSTINIć et al., 2023; LUQUE et al., 2021).

The Macro Average and the Weighted Average were used to calculate precision, recall,

and F1-Score for each class separately, applying the equations in (10) to (15) (FLORES et al.,

2024; ZHOU et al., 2021):

Macro Precision =
1

𝑁

𝑁∑︁
𝑖=1

Precision𝑖, (10)
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Macro Recall =
1

𝑁

𝑁∑︁
𝑖=1

Recall𝑖, (11)

Macro F1 Score =
1

𝑁

𝑁∑︁
𝑖=1

F1 Score𝑖, (12)

Weighted Precision =

∑︀𝑁
𝑖=1 True Positives𝑖∑︀𝑁

𝑖=1(True Positives𝑖 + False Positives𝑖)
, (13)

Weighted Recall =
∑︀𝑁

𝑖=1 True Positives𝑖∑︀𝑁
𝑖=1(True Positives𝑖 + False Negatives𝑖)

, (14)

Weighted F1 Score =

∑︀𝑁
𝑖=1 2× Precision𝑖 × Recall𝑖∑︀𝑁
𝑖=1(Precision𝑖 + Recall𝑖)

. (15)

3.6.2 Regression Model Evaluation Metrics

To evaluate the performance of the model, the performance metrics are calculated:

Root Mean Squared Error (RMSE), R-squared (𝑅2) score, and Mean Absolute Error (MAE)

(STEURER et al., 2021; CHICCO et al., 2021; GONZÁLEZ-SOPEÑA et al., 2021; RAINIO et

al., 2024).

• Root Mean Squared Error (RMSE): Square root of the MSE:

RMSE =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2. (16)

• Mean Absolute Error (MAE): Average of the absolute errors:

MAE =
1

𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖|. (17)

• 𝑅2 (Coefficient of Determination): Proportion of the variance in the dependent variable

that is explained by the model:

𝑅2 = 1−
∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)
2∑︀𝑛

𝑖=1(𝑦𝑖 − 𝑦)2
. (18)

where 𝑦𝑖 represents the observed values, 𝑦𝑖 represents the values predicted by the model, 𝑦

is the mean of the observed values, and 𝑛 is the total number of observations.
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3.6.3 Comparison of Values from Different Equipment

Pearson correlation allows for an analysis to determine how related the values ob-

tained by two different equipment from (Digital Spectrophotometer IL-593-S and HR4000

Spectrometer) the same sample are (ARMSTRONG, 2019):

𝑟𝑥𝑦 =
cov(𝑋, 𝑌 )

𝜎𝑋𝜎𝑌

. (19)
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4 RESULTS AND DISCUSSIONS

This Chapter analyzes the water and light stress environment for wheat leaves. Sec-

tion 4.1 addresses the results obtained under different stress conditions in the containers for

temperature and humidity, providing an analysis of the environmental factors in each cardboard

container. Section 4.2 explores the spectral databases, focusing on analyzing reflectance and ab-

sorption spectra. The results obtained from two instruments, the IL-593-S spectrophotometer and

the HR4000 spectrometer, are detailed, and a comparison between the two is made to determine

the total chlorophyll content. The Chapter concludes with the search for machine learning models

in Section 4.3 and 4.4. These models are used to classify water and light stress and estimate

the total chlorophyll content using multi-angular diffuse reflection spectra, demonstrating the

capability of artificial intelligence to predict and quantify the impact on wheat plants under this

characteristic.

4.1 WATER AND LIGHT STRESS ENVIRONMENT FOR WHEAT LEAVES

To ensure that the containers with different stress conditions received uniform treatment,

both temperature and humidity were monitored using the DHT11 sensor installed in the five

containers, obtaining readings throughout the experiment.

4.1.1 Result of Temperature Conditions in Stress Environment

In Figure 28, the data collected by five temperature sensors, each located in a container

subjected to different lighting conditions (with green, red, blue, and white LEDs, and one without

lighting), is shown. Each sensor recorded a total of 10,502 measurements obtained over a period

of 7 days. Additionally, Table 5 shows the statistical summary of the five temperature sensors.
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Figure 28 – Graph of data collected by five temperature sensors in containers under various lighting condi-
tions (green, red, blue, white LEDs, and no lighting). Each sensor recorded 10,502 measurements
over a period of 7 days
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Sensor Temperature 1 (Container with Stress Light Green) recorded a mean of 25.3 °C

with a standard deviation of 1.3 °C. The temperature values ranged from a minimum of 22.0 °C

to a maximum of 27.0 °C, with a median of 25.0 °C. The temperature measurements under this

green light condition are considered similar compared to other containers.

Sensor Temperature 2 (Container with Stress Light Red) showed a mean of 24.3 °C with

a standard deviation of 1.1 °C. The values ranged from a minimum of 22.0 °C to a maximum

of 26.0 °C, with a median of 24.0 °C. The lower mean and standard deviation compared to the

previous sensor suggest that red light conditions present lower maximum temperatures compared

to other environments.

For Sensor Temperature 3 (Container with Stress Light Blue), the mean was 25.3 °C

and the standard deviation was 1.3 °C. The temperature values fluctuated between a minimum of

22.0 °C and a maximum of 27.0 °C, with a median of 25.0 °C. The similarity in the mean and

median with Sensor Temperature 1 suggests a comparable response in the containers under blue

and green light.

Sensor Temperature 4 (Container with Stress Light Dark) reported a mean of 24.7

°C with a standard deviation of 1.1 °C. The values ranged from a minimum of 22.0 °C to a

maximum of 27.0 °C, with a median of 25.0 °C. Despite the slightly lower mean, the minimum

and maximum ranges are similar compared to other containers.

Finally, Sensor Temperature 5 (Container with Stress Light White) showed a mean of

24.6 °C with a standard deviation of 1.1 °C. The values ranged from a minimum of 22.0 °C to a
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maximum of 27.0 °C, with a median of 24.0 °C. This suggests a relatively stable response, similar

to red light in terms of variability and in the range of minimum and maximum temperatures

compared to other containers.

Table 5 – Statistical results of data collected by five temperature sensors in containers under various lighting
conditions (green, red, blue, white LEDs, and no lighting). Each sensor recorded 10,502 measure-
ments over a period of 7 days

Sensor Container Mean Standard Deviation Minimum Median Maximum
Temperature with Stress (°C) (°C) (°C) (°C)
1 Light Green 25.3 1.3 22.0 25.0 27.0
2 Light Red 24.3 1.1 22.0 24.0 26.0
3 Light Blue 25.3 1.3 22.0 25.0 27.0
4 Dark 24.7 1.1 22.0 25.0 27.0
5 Light White 24.6 1.1 22.0 24.0 27.0

Source: Own authorship (2024).

In Table 6, the correlation between temperature sensors is shown, providing insights

into the relationships between the measurements. A variety of significant correlations between

temperature sensors are observed, with a correlation of 0.91 between Sensor 1 and Sensor 5,

indicating a consistent relationship in temperature measurements. On the other hand, Table 6

shows the correlation of 0.97 between Sensor 1 and Sensor 3 reflects a similar temperature

scenario for the experiment.

Table 6 – Correlation between temperature sensors
Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5

Sensor 1 1.00 0.93 0.97 0.69 0.91
Sensor 2 0.93 1.00 0.93 0.79 0.92
Sensor 3 0.97 0.93 1.00 0.67 0.92
Sensor 4 0.69 0.79 0.67 1.00 0.88
Sensor 5 0.91 0.92 0.92 0.88 1.00

Source: Own authorship (2024).

4.1.2 Result of Humidity Conditions in Stress Environment

In Figure 29, the data collected by five humidity sensors (DHT11), each in a container

with light stress, is presented. Each sensor recorded a total of 10,502 measurements over 7 days,

with the descriptive statistical results detailed in Table 7.
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Figure 29 – Graph of data collected by five Humidity sensors in containers under various lighting conditions
(green, red, blue, white LEDs, and no lighting). Each sensor recorded 10,502 measurements over
a period of 7 days
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Sensor Humidity 1 (Stress Light Green) recorded a mean of 71.2 with a standard

deviation of 5.5. The humidity values ranged from a minimum of 60% to a maximum of 84%,

with a median of 69%. This indicates moderate variability in the humidity measurements under

green light conditions.

Sensor Humidity 2 (Stress Light Red) showed a mean of 70.3 with a standard deviation

of 6.5. The values ranged from a minimum of 57% to a maximum of 85%, with a median of

70%. The higher standard deviation suggests greater variability in the humidity response under

red light compared to the previous sensor.

For Sensor Humidity 3 (Stress Light Blue), the mean was 67.3 and the standard deviation

was 6.1. The humidity values fluctuated between a minimum of 57% and a maximum of 83%,

with a median of 66%. The similarity in the mean and median with Sensor Humidity 1 suggests

a comparable response under blue and green light.

Sensor Humidity 4 (Stress Light Dark) reported a mean of 86.8 with a standard deviation

of 3.4. The values ranged from a minimum of 70% to a maximum of 94%, with a median of

87%. This high presence of humidity is due to the absence of lighting in the container.

Finally, Sensor Humidity 5 (Stress Light White) showed a mean of 78.8 with a standard

deviation of 3.9. The values ranged from a minimum of 67% to a maximum of 88%, with a

median of 78%. This suggests a stable response to white light conditions, similar to red light in

terms of variability.
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Table 7 – Statistical results of data collected by five Humidity sensors in containers under various lighting
conditions (green, red, blue, white LEDs, and no lighting). Each sensor recorded 10,502 measure-
ments over a period of 7 days

Sensor Container Mean Standard Deviation Minimum Median Maximum
Humidity with Stress % % % %
1 Light Green 71.2 5.5 60 69 84
2 Light Red 70.3 6.5 57 70 85
3 Light Blue 67.3 6.1 57 66 83
4 Dark 86.8 3.4 70 87 94
5 Light White 78.8 3.9 67 78 88

Source: Own authorship (2024).

In the correlation analysis between the different humidity sensors used, significant rela-

tionships are observed, indicating the presence of consistent patterns in the measurements. Table

8 presents the correlation coefficients between the sensors, where the correlation between Sensor

1 and Sensor 5 is 0.93, indicating a robust relationship between these humidity measurements.

These results provide a reference for the environmental conditions in our experiment.

Table 8 – Correlation Matrix between humidity sensors
Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5

Sensor 1 1.00 0.64 0.87 0.51 0.93
Sensor 2 0.64 1.00 0.84 0.58 0.70
Sensor 3 0.87 0.84 1.00 0.63 0.88
Sensor 4 0.51 0.58 0.63 1.00 0.79
Sensor 5 0.93 0.70 0.88 0.79 1.00

Source: Own authorship (2024).

4.1.3 Interaction Between Temperature and Humidity Under Stress Conditions

Figures 30 and 31 show the environmental conditions in our tests with DHT11 sensors in

the containers, which are designed to measure both humidity and temperature simultaneously. An

inverse relationship between temperature and relative humidity is observed. As the temperature

increases, the air’s capacity to retain moisture varies because warm air can hold more water

vapor before reaching saturation. At higher temperatures, relative humidity tends to decrease.

Conversely, at lower temperatures, the air has a reduced capacity to hold moisture, resulting in

higher relative humidity (INGRAHAM et al., 1974; ZHA et al., 2017).

During the experiment, continuous readings of relative humidity and temperature were

recorded at intervals of approximately 1 minute, allowing us to analyze how these variables re-

sponded to changes in internal environmental conditions. Figures 30 and 31 show the temperature

and humidity in the containers over 24 hours on day 4 of the experiment.
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Figure 30 – Temperature on day 4, over 24 hours.
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These data reflect the consistency in humidity measurements under different stress con-

ditions. The similarity in the minimum and maximum ranges indicates common environmental

conditions, with the experiment observing that the temperature and humidity conditions were as

similar as possible in each container.

Figure 31 – Humidity on day 4, over 24 hours
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4.2 SPECTRAL DATABASE FOR REFLECTION AND ABSORPTION

In this Section, the collection of reflection and absorption spectra from samples under

different stress conditions in wheat leaves is explored. The process begins with wheat seeds

soaked for 18 hours, followed by placement in plastic containers with a double-layer germination

paper. After germination and growth, the leaves were exposed for 7 days to different combinations

of LED light colors (green, red, blue, and white) and distilled water in volumes of (3 ml, 5 ml,

and 10 ml). Figure 32 shows the samples under 5 ml water stress for different types of light stress.

After cutting the fresh leaves from the containers, they were placed in a Petri dish (area of 55 cm2)

with a black background ( in Figure 33 and 34). In Figure 35 and 36 the corresponding diffuse

reflectance spectroscopy measurement. Each set of images represents a specific combination of

LED color and distilled water volume, allowing a preliminary visual assessment of the impact of

these stress conditions on the health and appearance of the leaves.

Finally, an analysis of the absorption spectra of the leaves was carried out. To obtain a

comparison of the results, we used a spectrophotometer (described in Subsection 3.1.3) and a

spectrometer (described in Subsection 3.1.2) to measure the total chlorophyll content, and the

results were compared.

Figure 32 – Containers with wheat leaves after 7 days of growth under 5 ml distilled water stress

'
■ ■ ■ ■ ■

Source: Own authorship (2024).

4.2.1 Analysis of the Reflectance Spectra

To perform the reflectance spectra measurements, samples of wheat leaves were ob-

tained, focusing only on the green region without roots. As shown in Figure 33, wheat leaf
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samples are presented after 7 days of growth under 9 different stress conditions. Each subplot

shows a specific combination of LED color and distilled water volume.

Figure 33 – Wheat leaf samples after 7 days of growth under 9 different stress conditions. (a) Green LED,
3 ml (33(a)), (b) Green LED, 5 ml (33(b)), (c) Green LED, 10 ml (33(c)), (d) Red LED, 3 ml (33(d)),
(e) Red LED, 5 ml (33(e)), (f) Red LED, 10 ml (33(f)), (g) Blue LED, 3 ml (33(g)), (h) Blue LED,
5 ml (33(h)), (i) Blue LED, 10 ml (33(i))

■ 3 ml

(a)

■ 5 ml

(b)

■ 10 ml

(c)

■ 3 ml

(d)

■ 5 ml

(e)

■ 10 ml

(f)

■ 3 ml

(g)

■ 5 ml

(h)

■ 10 ml

(i)

In Figure 34, wheat leaf samples are shown after 7 days of growth under various

stress conditions. The first row displays the conditions without illumination LED, with different

volumes of distilled water: (a) 3 ml (Figure 34(a)), (b) 5 ml (Figure 34(b)), and (c) 10 ml
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(Figure 34(c)). The second row presents the conditions with white LED, also with different

volumes: (d) 3 ml (Figure 34(d)), (e) 5 ml (Figure 34(e)), and (f) 10 ml (Figure 34(f)). This

organization facilitates a visual comparison of the effect of the presence or absence of LED

lighting.

Figure 34 – Wheat leaf samples after 7 days of growth under various stress conditions. (a) Without LED,
3 ml (34(a)), (b) Without LED, 5 ml (34(b)), (c) Without LED, 10 ml (34(c)), (d) White LED, 3 ml
(34(d)), (e) White LED, 5 ml (34(e)), (f) White LED, 10 ml (34(f))

■ 3 ml

(a)

■ 5 ml

(b)

■ 10 ml

(c)

■ 3 ml

(d)

■ 5 ml

(e)

■ 10 ml

(f)

To evaluate how different stress conditions affect wheat leaves, a spectral analysis

was conducted using multi-angular reflectance spectroscopy. Figure 35 presents the reflection

spectra of fresh wheat leaves subjected to three LED colors (green, red, and blue) with three

different volumes (3 ml, 5 ml, and 10 ml). A total of 23 diffuse reflection spectra were obtained

at random angles of light incidence on the Petri dish containing the wheat leaf samples. Due to

the multi-angular nature of the measurements, variations in spectral intensities were observed.

These amplitude differences pose a challenge for the models, which must extract features from

the complex patterns present in our samples.
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Figure 35 – Multi-angular reflection spectra of fresh wheat leaves stressed under three LED colors: (a) Green
LED, 3 ml (35(a)), (b) Green LED, 5 ml (35(b)), (c) Green LED, 10 ml (35(c)), (d) Red LED, 3 ml
(35(d)), (e) Red LED, 5 ml (35(e)), (f) Red LED, 10 ml (35(f)), (g) Blue LED, 3 ml (35(g)), (h) Blue
LED, 5 ml (35(h)), and (i) Blue LED, 10 ml (35(i))
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This Figure 36 presents the multi-angular reflection spectra of fresh wheat leaves

subjected to different stress conditions, with and without exposure to white LED illumination,

using different volumes of distilled water. A total of 23 diffuse reflection spectra were obtained

at different angles of light incidence on the Petri dish containing the fresh wheat leaf samples.
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Figure 36 – Multi-angular reflectance spectra of fresh wheat leaves, stressed without LED and with white
LED in different volumes of distilled water. (a) No LED, 3 ml (36(a)), (b) No LED, 5 ml (36(b)),
(c) No LED, 10 ml (36(c)), (d) White LED, 3 ml (36(d)), (e) White LED, 5 ml (36(e)), (f) White
LED, 10 ml (36(f))
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The Figure 37 shows the standard deviation as a function of wavelength for each of the

15 stress conditions applied to wheat leaf samples after 7 days of growth, and for samples taken

in a multi-angular setup. Each graph presents the standard deviation along with the average of

the diffuse reflectance data for each stress condition, covering a wavelength range from 450 nm

to 780 nm. The Figure 37(a) to 37(o) represent these stress conditions individually, allowing for

visualization of how the dispersion of the data obtained varies for the different stress conditions.

The comparison between these standard deviation curves provides a general overview of how the

intensities vary for each sample taken in a multi-angular setup.
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Figure 37 – Standard deviation of reflectance spectra for wheat leaf samples after 7 days of growth under
15 different stress conditions (SC). Each subplot Figure 37(a) to 37(o) represents the standard
deviation of reflectance measurements across wavelengths from 450 nm to 780 nm for one of the
15 stress conditions, including water and light stress
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In Figure 37, the minimum standard deviation is about 0.2%, corresponding to stress

condition 3, and the maximum standard deviation is about 12%, corresponding to stress condition

9.

4.2.2 Analysis of the Absorption Spectra

Following the reflection measurements described in Subsection 4.2.1 and with the

extraction methodology (described in Subsection 3.3.2), 15 samples were extracted, as shown

in Figure 38. Here, Figure 45(a) shows the samples for 3 ml, 5 ml, 10 ml stressed in the first

container (Green LED Light) of the experiment, Figure 45(b) shows the samples for 3 ml, 5 ml,

10 ml stressed in the second container (Red LED Light), Figure 45(c) shows the samples for 3 ml,

5 ml, 10 ml stressed in the third container (Blue LED Light), Figure 45(d) shows the samples for

3 ml, 5 ml, 10 ml stressed in the fourth container (No Light), and Figure 45(e) shows the samples

for 3 ml, 5 ml, 10 ml stressed in the fifth container (White LED Light). It can be highlighted that,

compared to leaves with a non-distinguishable green color except for the container without light,

a notable difference in green color tones can be observed in the liquid extraction. The lighter

green color is notable for the samples stressed without any illumination, while the greener color

is observed for the samples stressed with white light. However, this does not necessarily indicate

the total amount of chlorophyll just by the green color tone in the sample, as color perception is

subjective.
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Figure 38 – Extracted samples showing different stress conditions across containers: (a) Green LED light
for 3 ml, 5 ml, 10 ml of distilled water, (b) Red LED light for 3 ml, 5 ml, 10 ml of distilled water,
(c) Blue LED light for 3 ml, 5 ml, 10 ml of distilled water, (d) No light for 3 ml, 5 ml, 10 ml of
distilled water, and (e) White LED light for 3 ml, 5 ml, 10 ml of distilled water

■ 3 ml 5 ml 10 ml
(a)

■ 3 ml 5 ml 10 ml
(b)

■ 3 ml 5 ml 10 ml
(c)

■ 3 ml 5 ml 10 ml
(d)

■ 3 ml 5 ml 10 ml
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Source: Own authorship (2024).

4.2.2.1 Results for Spectrophotometer IL-593-S

Table 9 shows the results obtained for various samples in terms of chlorophyll. The

table includes the mass of each sample (in grams), the optical densities measured at 645 nm

(𝐴645) and 663 nm (𝐴663) using the Spectrophotometer IL-593-S (described in Subsection 3.1.3),
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and the concentrations of chlorophyll a, b, and total (using Equations (4)–(6)), expressed in

milligrams per gram (mg · g−1).

Table 9 – Chlorophyll measurements obtained with the Spectrophotometer IL-593-S. The table shows the
mass (in grams) and the optical densities at 𝐴645 and 𝐴663, as well as the concentrations of
chlorophyll a, b, and total (in mg · g−1) for each sample

S.C. Mass 𝐴645 𝐴663 Chlorophyll a Chlorophyll b Total Chlorophyll
(g) (mg · g−1) (mg · g−1) (mg · g−1)

01 0.080 0.404 1.143 0.8393 0.2439 1.083
02 0.220 1.097 2.252 0.5829 0.3314 0.914
03 0.086 0.483 1.351 0.9220 0.2755 1.197
04 0.110 0.699 1.851 0.9831 0.3338 1.317
05 0.130 0.132 0.504 0.2325 0.0255 0.258
06 0.140 0.262 0.828 0.3504 0.0759 0.426
07 0.113 0.711 1.864 0.9628 0.3344 1.297
08 0.136 0.839 2.035 0.8672 0.3562 1.223
09 0.204 1.195 2.291 0.6343 0.4079 1.042
10 0.116 0.021 0.090 0.0468 0.0026 0.049
11 0.149 0.047 0.219 0.0891 0.0017 0.091
12 0.172 0.082 0.352 0.1235 0.0067 0.130
13 0.228 1.452 2.323 0.5613 0.4907 1.052
14 0.214 1.502 2.327 0.5961 0.5492 1.145
15 0.218 1.597 2.334 0.5813 0.5883 1.169

Source: Own authorship (2024).

4.2.2.2 Results for HR4000 Spectrometer

For the HR4000 spectrometer described in Subsection 3.1.2, it provides all intensities

in the range of 200-1100 nm. We obtained 15 absorption spectra using the configuration for ab-

sorbance spectroscopy (Subsection 3.1.6). In Figure 39, the spectra obtained with the mentioned

spectrometer are shown in the range from 400 to 850 nm, with a reference point at 750 nm (all

spectra were vertically shifted with 0.00 at that reference point). In the region from 600 nm to

700 nm, which is our region of interest, we observe a notable progressive variation in intensity,

yielding different intensity levels. This ensures the variability in chlorophyll quantification,

allowing for adequate training in the proposed models.
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Figure 39 – Absorption spectra of 15 liquid chlorophyll samples. The spectra show intensity as a function of
wavelength (in nm) for each sample, representing a different stress condition (S.C. 01 to S.C. 15)
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Source: Own authorship (2024).

4.2.2.3 Comparison of Total Chlorophyll Results

Table 10 presents the quantification of chlorophyll using a Digital Spectrophotometer

IL-593-S and the HR4000 spectrometer. The table is organized into two main sections, each

corresponding to one of the devices. For the 15 different stress conditions, OD values at the peaks

of 645 nm (𝐴645) and 663 nm (𝐴663) are reported, as well as the concentrations of chlorophyll

a, chlorophyll b, and total chlorophyll derived after applying the corresponding calculation

described in 3.3.2. These data allow us to compare how correlated both devices are in measuring

chlorophyll concentrations.

Table 11 summarizes the descriptive statistics for chlorophyll data obtained using two

different instruments. For the Digital Spectrophotometer IL-593-S, the chlorophyll measurements

(Chl a, Chl a b, and Chl total) show variable means and medians, with standard deviations and

variances indicating moderate to high levels of dispersion in the readings. Extreme values cover

a significant range, suggesting some variability in the measurements. In contrast, the HR4000
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Table 10 – Comparison of chlorophyll measurements obtained with the Digital Spectrophotometer IL-593-S
and the HR4000 spectrometer. OD values at 𝐴645 and 𝐴663, and concentrations of chlorophyll a,
b, and total for both devices are shown. The percentage of total chlorophyll is shown in Pct. for
each device.

S.C. Digital Spectrophotometer IL-593-S HR4000 spectrometer
𝐴645 𝐴663 Chl a Chl b Chl T Pct. 𝐴645 𝐴663 Chl a Chl b Chl T Pct.

01 0.404 1.143 0.839 0.244 1.083 48.6% 0.481 1.072 0.770 0.375 1.145 51.4%
02 1.097 2.252 0.583 0.331 0.914 47.9% 1.269 2.241 0.569 0.422 0.991 52.1%
03 0.483 1.351 0.922 0.275 1.197 48.5% 0.575 1.278 0.854 0.418 1.271 51.5%
04 0.699 1.851 0.983 0.334 1.317 48.6% 0.823 1.753 0.911 0.484 1.395 51.4%
05 0.132 0.504 0.233 0.026 0.258 41.0% 0.229 0.626 0.282 0.089 0.371 59.0%
06 0.262 0.828 0.350 0.076 0.426 49.6% 0.287 0.789 0.330 0.103 0.433 50.4%
07 0.711 1.864 0.963 0.334 1.297 53.0% 0.701 1.473 0.744 0.405 1.149 47.0%
08 0.839 2.035 0.867 0.356 1.223 52.4% 0.821 1.707 0.716 0.398 1.113 47.6%
09 1.195 2.291 0.634 0.408 1.042 47.8% 1.363 2.347 0.641 0.496 1.136 52.2%
10 0.021 0.090 0.047 0.003 0.049 37.4% 0.044 0.125 0.063 0.018 0.082 62.6%
11 0.047 0.219 0.089 0.002 0.091 47.9% 0.061 0.214 0.086 0.013 0.099 52.1%
12 0.082 0.352 0.124 0.007 0.130 46.8% 0.114 0.347 0.119 0.029 0.148 53.2%
13 1.452 2.323 0.561 0.491 1.052 47.5% 1.678 2.388 0.566 0.598 1.163 52.5%
14 1.502 2.327 0.596 0.549 1.145 47.2% 1.749 2.420 0.608 0.671 1.279 52.8%
15 1.597 2.334 0.581 0.588 1.169 47.3% 1.845 2.440 0.597 0.707 1.304 52.7%

Source: Own authorship (2024).

shows slightly lower means for Chl a and Chl total, with standard deviations and variances

reflecting moderate to low variability in the chlorophyll readings. The comparison between

both instruments highlights differences in measurements and dispersion, revealing a similarity

between the results from these devices.

Table 11 – Descriptive statistics of chlorophyll measurements obtained with the Digital Spectrophotometer
IL-593-S and the HR4000 spectrometer. The table presents the mean, median, standard deviation,
variance, maximum, and minimum for OD values (𝐴645 and 𝐴663) and chlorophyll concentrations
a, b, and total

Variable Mean Median Standard Deviation Variance Maximum Minimum
Digital Spectrophotometer IL-593-S

𝐴645 0.702 0.699 0.558 0.311 1.597 0.021
𝐴663 1.451 1.851 0.857 0.735 2.334 0.090
Chl a 0.558 0.583 0.325 0.106 0.983 0.047
Chl b 0.268 0.331 0.203 0.041 0.588 0.002
Chl total 0.826 1.052 0.483 0.233 1.317 0.049

HR4000 Spectrometer
𝐴645 0.803 0.701 0.635 0.403 1.845 0.044
𝐴663 1.415 1.473 0.852 0.726 2.440 0.125
Chl a 0.524 0.597 0.280 0.078 0.911 0.063
Chl b 0.348 0.405 0.239 0.057 0.707 0.013
Chl total 0.872 1.136 0.489 0.239 1.395 0.082

Source: Own authorship (2024).

In Figure 40, with the information from Table 11, a visual comparison is provided

between the distributions of chlorophyll measurements obtained with two different equipment

setups. Each boxplot displays the distribution of values for Chlorophyll a, Chlorophyll b, and
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Total Chlorophyll, allowing for a comparison of how different techniques affect the measurements

and assessing the variations between the equipment. Using the spectrophotometer described in

Subsection 3.1.3, the same sample was measured five times to calculate the standard deviation of

the measurements, which was 0.001 mg · g−1 for total chlorophyll. It is important to note that,

for the sake of the comparison, equivalent chlorophyll levels were obtained. .

Figure 40 – Visual comparison of the distributions of Chlorophyll a, Chlorophyll b, and Total Chlorophyll
measurements obtained with two different equipment setups. Each boxplot illustrates the varia-
tion in the measurements and allows for the evaluation of the impact of different techniques on
the results, according to the data presented in Table 11
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Source: Own authorship (2024).

Figure 41 shows a comparison of the absorption spectra obtained using two different

equipment setups. In particular, it compares the results from a spectrophotometer for spectral

indices at 645 nm and 663 nm with the absorption spectra obtained from the HR4000 spectrometer.

Each Figure 41(a) to 41(o) represents a specific spectrum measured under different stress

conditions. Figure 41 is also organized in a grid of subfigures. This layout facilitates direct visual

comparison between the spectra and spectral indices, where it can be observed that the values

are highly correlated with some variations.
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Figure 41 – Comparison of absorption spectra obtained using two different equipment setups: a spectropho-
tometer IL-593-S providing two spectral indices (645 nm and 663 nm) and an HR4000 spectrom-
eter that provides a curve describing intensity at different wavelengths
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Table 12 presents the Pearson correlation coefficients for Chlorophyll a, b, and total

measurements taken by two different equipment setups. The high correlation values suggest that

the chlorophyll measurements obtained by the two equipment setups are highly consistent and

closely related.

Table 12 – Pearson correlation between chlorophyll measurements from two different equipment setups
Measurement Pearson Correlation
Chl a 0.9831
Chl b 0.9895
Chl total 0.9859

Source: Own authorship (2024).

The results presented in Table 11 and Figure 41 reaffirm the high consistency between

the chlorophyll measurements obtained using the two equipment setups. The Pearson correlation

coefficients, all above 0.98, suggest strong agreement in the readings of Chlorophyll a, b, and

total, regardless of the equipment used. These results support the reliability of the collected

data and the validity of subsequent analyses, as the variability in measurements, as highlighted

in Table 11, also reflects different levels of total chlorophyll, a crucial factor for training and

validating the artificial intelligence-based model. These varying levels adequately capture the

necessary variability for a robust and precise analysis of chlorophyll concentrations in test data.

4.3 MACHINE LEARNING MODELS TO DETECT WATER AND LIGHT STRESS

In Section 4.3, we will explore the application of machine learning in the classification of

water and light stress in wheat leaves. The first subsection will focus on water stress classification

using AI, presenting the results obtained for different models where the preprocessing technique

mainly varies. The second subsection will address light stress classification, highlighting how AI

models for different preprocessing techniques can improve classification results. Both subsections

will illustrate the effectiveness of these models for detecting the applied stress.

4.3.1 Water Stress Classification using AI

Table 13 and Figure 42 presents a comparison of the performance of various MiniRocket

models evaluated on different datasets with preprocessing techniques (described in Section 3.4).

Model 26, using SNV and Continuum Removed preprocessing, achieved perfect accuracy with a

runtime of 5.96 seconds. Similarly, Model 9, with Continuum Removed and MSC preprocessing,
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also achieved perfect accuracy but with a faster runtime of 3.10 seconds, Model 10 achieved

a perfect accuracy. Other models, such as Models 01, 20, 4, 32, 11 and 23 demonstrated high

accuracies of 0.986.
Table 13 – Performance metrics of the MiniRocket models for classification tasks. The table presents the

accuracy and processing time for various models using different preprocessing techniques on
two datasets (Data1 and Data2). The accuracy values indicate the performance of each model
for the test dataset

Model Data1 Data2 Accuracy (Test Dataset) Training Time (s)
Model 26 SNV Continuum Removed 1.000 5.963
Model 09 Continuum Removed MSC 1.000 3.104
Model 10 Continuum Removed SNV 1.000 3.996
Model 01 - Continuum Removed 0.986 100.139
Model 20 MSC Continuum Removed 0.986 3.014
Model 04 - SNV 0.986 2.263
Model 32 Nor. Area Continuum Removed 0.986 3.213
Model 11 Continuum Removed Nor. Area 0.986 3.073
Model 23 MSC Nor. Area 0.986 3.888
Model 35 Nor. Area SNV 0.971 3.101
Model 34 Nor. Area MSC 0.971 3.075
Model 29 SNV Nor. Area 0.971 5.221
Model 22 MSC SNV 0.971 3.080
Model 12 Continuum Removed Smoothed 0.971 5.772
Model 42 Smoothed Nor. Area 0.957 4.270
Model 07 Continuum Removed - 0.957 3.550
Model 41 Smoothed SNV 0.957 3.198
Model 17 Detrended Nor. Area 0.957 3.038
Model 38 Smoothed Continuum Removed 0.957 3.060
Model 37 Smoothed - 0.957 2.207
Model 36 Nor. Area Smoothed 0.957 5.370
Model 24 MSC Smoothed 0.957 6.157
Model 33 Nor. Area Detrended 0.957 4.847
Model 06 - Smoothed 0.957 2.676
Model 40 Smoothed MSC 0.942 3.243
Model 03 - MSC 0.942 4.770
Model 30 SNV Smoothed 0.942 4.119
Model 14 Detrended Continuum Removed 0.942 3.049
Model 25 SNV - 0.942 3.241
Model 28 SNV MSC 0.942 4.689
Model 31 Nor. Area - 0.928 2.276
Model 08 Continuum Removed Detrended 0.928 3.093
Model 05 - Nor. Area 0.928 2.300
Model 39 Smoothed Detrended 0.928 4.553
Model 18 Detrended Smoothed 0.928 5.976
Model 19 MSC - 0.913 2.265
Model 16 Detrended SNV 0.913 3.107
Model 27 SNV Detrended 0.884 4.384
Model 15 Detrended MSC 0.870 4.450
Model 21 MSC Detrended 0.870 4.757
Model 13 Detrended - 0.826 2.262
Model 02 - Detrended 0.812 2.219

Source: Own authorship (2024).
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Figure 42 – Confusion matrices showing the performance of different models for water stress classification as
presented in Table 13 (for the test dataset). The images are confusion matrices corresponding to
the following models: (a) Model 26, (b) Model 9, (c) Model 10, (d) Model 1, (e) Model 20, and
(f) Model 4. Each subimage visualizes the model’s performance in classifying different levels of
water stress, as detailed in the associated tables (Table 14, Table 15, Table 16, Table 17)
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Source: Own authorship (2024).

The performance metrics on the test data for the best models presented in Table 13, as

seen in the tables (Table 14, Table 15, Table 16, and Table 17). Models 26, 9, and 10 exhibit
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exceptional performance, with precision, recall, and F1 scores all reaching a perfect score of 1.00

in the 3𝑚𝑙, 5𝑚𝑙, and 10𝑚𝑙 classes. This results in an overall accuracy of 1.00, with consistently

high macro and weighted averages also at 1.00, based on a total support of 69 instances. Model

11 shows equally high performance, achieving an accuracy of 0.99, with slightly lower precision

scores for the 10𝑚𝑙 class, but maintaining solid macro and weighted averages (see Section 3.6).

Models 20 and 4 also demonstrate robust performance, consistently achieving high precision and

recall across all classes, with an overall accuracy of 0.99.

Table 14 – Metrics for test data: Model 26, 9 and 10
Class Precision Recall F1-score Support
3 ml 1.00 1.00 1.00 27
5 ml 1.00 1.00 1.00 27
10 ml 1.00 1.00 1.00 15
Accuracy 1.00
Macro Avg 1.00 1.00 1.00 69
Weighted Avg 1.00 1.00 1.00 69

Table 15 – Metrics for test data: Model 1
Class Precision Recall F1-score Support
3 ml 1.00 0.96 0.98 27
5 ml 1.00 1.00 1.00 27
10 ml 0.94 1.00 0.97 15
Accuracy 0.99 69
Macro Avg 0.98 0.99 0.98 69
Weighted Avg 0.99 0.99 0.99 69

Table 16 – Metrics for test data: Model 20
Class Precision Recall F1-score Support
3 ml 1.00 0.96 0.98 27
5 ml 1.00 1.00 1.00 27
10 ml 0.94 1.00 0.97 15
Accuracy 0.99 69
Macro Avg 0.98 0.99 0.98 69
Weighted Avg 0.99 0.99 0.99 69

Table 17 – Metrics for test data: Model 4
Class Precision Recall F1-score Support
3 ml 0.96 1.00 0.98 27
5 ml 1.00 1.00 1.00 27
10 ml 1.00 0.93 0.97 15
Accuracy 0.99 69
Macro Avg 0.99 0.98 0.98 69
Weighted Avg 0.99 0.99 0.99 69

According to the results, Model 26 using SNV and Continuum Removed demonstrated

the best performance in the tests, achieving an accuracy of 1.000 on the test dataset, with a
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training time of 5.963 seconds. This model stood out as the best among the best in terms of

precision and training efficiency. The use of MiniRocket for classification tasks related to water

stress (3ml, 5ml, 10ml) in leaves through reflection spectroscopy provided an ideal combination

of high accuracy and reasonable training time.

4.3.2 Light Stress Classification using AI

The results of the models presented in Table 18 indicate a significant performance using

different preprocessing techniques. The models achieved accuracies ranging from 0.841 to 0.986,

highlighting the effectiveness of these techniques in spectral (multiangular) analysis tasks for

classifying light stress in wheat leaves.
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Table 18 – Comparison of Models for Light Stress Classification Based on Different Data Preprocessing
Techniques, Accuracy (for the test dataset), and Execution Time

Model Data1 Data2 Accuracy (Test Dataset) Training Time (s)
Model 01 - Continuum Removed 0.986 3.603
Model 08 Continuum Removed Detrended 0.971 5.943
Model 29 SNV Nor. Area 0.971 4.436
Model 14 Detrended Continuum Removed 0.971 4.340
Model 12 Continuum Removed Smoothed 0.971 3.085
Model 18 Detrended Smoothed 0.971 5.408
Model 35 Nor. Area SNV 0.971 3.208
Model 24 MSC Smoothed 0.971 2.997
Model 36 Nor. Area Smoothed 0.957 4.624
Model 37 Smoothed - 0.957 3.595
Model 33 Nor. Area Detrended 0.957 6.508
Model 32 Nor. Area Continuum Removed 0.957 4.697
Model 38 Smoothed Continuum Removed 0.957 5.416
Model 30 SNV Smoothed 0.957 6.717
Model 39 Smoothed Detrended 0.957 4.561
Model 40 Smoothed MSC 0.957 5.318
Model 26 SNV Continuum Removed 0.957 2.895
Model 42 Smoothed Nor. Area 0.957 5.027
Model 07 Continuum Removed - 0.957 4.323
Model 41 Smoothed SNV 0.942 3.993
Model 17 Detrended Nor. Area 0.942 4.652
Model 06 - Smoothed 0.942 4.265
Model 28 SNV MSC 0.942 7.153
Model 34 Nor. Area MSC 0.942 2.997
Model 20 MSC Continuum Removed 0.942 5.732
Model 31 Nor. Area - 0.928 6.249
Model 23 MSC Nor. Area 0.928 4.164
Model 09 Continuum Removed MSC 0.928 3.006
Model 10 Continuum Removed SNV 0.928 4.901
Model 11 Continuum Removed Nor. Area 0.913 4.216
Model 03 - MSC 0.913 2.951
Model 19 MSC - 0.913 3.418
Model 15 Detrended MSC 0.913 4.658
Model 27 SNV Detrended 0.899 2.850
Model 16 Detrended SNV 0.899 5.826
Model 25 SNV - 0.899 4.897
Model 05 - Nor. Area 0.899 4.168
Model 21 MSC Detrended 0.899 4.665
Model 04 - SNV 0.884 2.703
Model 22 MSC SNV 0.870 3.246
Model 13 Detrended - 0.841 5.323
Model 02 - Detrended 0.841 4.480

Source: Own authorship (2024).

Figure 43 shows the confusion matrices for test data with the models that achieved the

best performance in light stress classification.
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Figure 43 – Confusion matrices showing the performance of different models for light stress classification for
the test dataset. (a) Model 01: with an accuracy of 0.986, (b) Model 08: with an accuracy of 0.971,
(c) Model 29: with an accuracy of 0.971, (d) Model 14: with an accuracy of 0.971, (e) Model 12:
with an accuracy of 0.971, (f) Model 18: with an accuracy of 0.971
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Source: Own authorship (2024).

Additional analysis with test metrics (Table 19, Table 20, andTable 21) reveals high and

consistent performance across all classes, with most models achieving precision and recall scores

above 90%, highlighting their reliability in classifying light stress levels in the test dataset.
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Table 19 – Metrics for test data 1
Class Precision Recall F1-score Support
Green LED 0.94 1.00 0.97 17
Red LED 1.00 0.94 0.97 18
Blue LED 1.00 1.00 1.00 11
Dark 1.00 1.00 1.00 8
White LED 1.00 1.00 1.00 15
Accuracy 0.99 69
Macro Avg 0.99 0.99 0.99 69
Weighted Avg 0.99 0.99 0.99 69

Table 20 – Metrics for test data 8
Class Precision Recall F1-score Support
Green LED 0.94 0.94 0.94 17
Red LED 0.94 0.94 0.94 18
Blue LED 1.00 1.00 1.00 11
Dark 1.00 1.00 1.00 8
White LED 1.00 1.00 1.00 15
Accuracy 0.97 69
Macro Avg 0.98 0.98 0.98 69
Weighted Avg 0.97 0.97 0.97 69

Table 21 – Metrics for test data 29
Class Precision Recall F1-score Support
Green LED 0.94 1.00 0.97 17
Red LED 1.00 0.89 0.94 18
Blue LED 0.92 1.00 0.96 11
Dark 1.00 1.00 1.00 8
White LED 1.00 1.00 1.00 15
Accuracy 0.97 69
Macro Avg 0.97 0.98 0.97 69
Weighted Avg 0.97 0.97 0.97 69

The comparison of various models for light stress classification, using different data

preprocessing techniques, indicates that Model 01, with the Continuum Removed technique,

excels with an accuracy of 0.986 on the test dataset and a training time of 3.603 seconds. This

model stands out as one of the best in terms of the combination of high accuracy and efficiency

in training time.

These results for water stress classification, with an accuracy of 1.00, and light stress

classification, with an accuracy of 0.986, highlight the model’s effectiveness. However, the

lower results reflect the importance of using preprocessing techniques and model selection in the

analysis of diffuse reflectance spectra, demonstrating their impact on classification accuracy and

robustness.
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4.4 MACHINE LEARNING MODELS TO ESTIMATE THE AMOUNT OF TOTAL

CHLOROPHYLL

In this section, the results are presented using two approaches for estimating the total

chlorophyll content in wheat leaves: the MiniRocket model and a deep neural network (DNN)

model. The first approach uses MiniRocket, an efficient method for analysis that highlights the

fast training time of the models. The second approach relies on deep neural networks (DNN), a

technique capable of learning complex nonlinear features from the data. This approach shows

higher precision in estimating the data in the test set but also presents longer training times.

4.4.1 MiniRocket-Based Model for Total Chlorophyll Estimation in Wheat Leaves

Table 22 presents the performance metrics for various MiniRocket regression models

applied to different datasets. The table summarizes the coefficient of determination (𝑅2), the

root mean square error (RMSE), and the mean absolute error (MAE) for both test and training

sets, along with the training time for each model. The models were evaluated using different

combinations of data preprocessing techniques described in Section 3.4, allowing an assessment

of their predictive capability and computational efficiency.

Figure 44 shows the visual comparison between the predicted and measured total

chlorophyll content for several MiniRocket regression models in the test set. Each subplot

illustrates the relationship between predicted and measured values through a regression plot.
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Table 22 – Performance metrics of various MiniRocket regression models on different datasets. The table
shows 𝑅2, root mean squared error (RMSE), and mean absolute error (MAE) for both the test
and train sets, along with the time taken for each model. Models are evaluated using different
combinations of data preprocessing techniques and feature sets

Model Data1 Data2 Result Test Set Result Train Set Training Time
𝑅2 RMSE MAE 𝑅2 RMSE MAE (s)

Model 36 Nor. Area Smoothed 0.928 0.125 0.094 0.999 0.013 0.009 3.392
Model 42 Smoothed Nor. Area 0.920 0.132 0.100 1.000 0.000 0.000 3.603
Model 32 Nor. Area CR 0.919 0.132 0.103 0.992 0.041 0.028 3.364
Model 37 Smoothed - 0.917 0.134 0.103 0.998 0.023 0.016 3.797
Model 12 CR Smoothed 0.912 0.138 0.098 1.000 0.011 0.007 4.984
Model 18 Detrended Smoothed 0.911 0.139 0.109 0.998 0.020 0.013 3.809
Model 38 Smoothed CR 0.911 0.139 0.104 1.000 0.008 0.006 3.489
Model 24 msc Smoothed 0.907 0.141 0.109 0.981 0.065 0.045 3.582
Model 05 - Nor. Area 0.906 0.142 0.108 0.984 0.060 0.041 2.667
Model 40 Smoothed MSC 0.905 0.143 0.110 0.975 0.074 0.051 3.621
Model 30 SNV Smoothed 0.904 0.144 0.109 1.000 0.010 0.007 3.424
Model 11 CR Nor. Area 0.903 0.145 0.113 0.994 0.036 0.024 3.534
Model 29 SNV Nor. Area 0.899 0.147 0.114 0.995 0.035 0.024 5.648
Model 26 SNV CR 0.896 0.150 0.117 0.994 0.036 0.024 3.402
Model 28 SNV MSC 0.894 0.151 0.116 0.992 0.043 0.029 3.591
Model 10 CR SNV 0.893 0.152 0.122 1.000 0.005 0.003 5.140
Model 19 MSC - 0.891 0.153 0.120 0.993 0.038 0.025 2.750
Model 04 - SNV 0.891 0.154 0.117 0.994 0.035 0.023 4.283
Model 22 MSC SNV 0.890 0.154 0.119 0.993 0.040 0.027 3.359
Model 09 CR MSC 0.889 0.155 0.123 0.995 0.034 0.023 4.346
Model 35 Nor. Area SNV 0.888 0.155 0.121 0.994 0.038 0.026 5.806
Model 01 - CR 0.888 0.156 0.120 0.996 0.031 0.021 3.576
Model 21 MSC Detrended 0.887 0.156 0.118 0.986 0.055 0.037 5.094
Model 31 Nor. Area - 0.887 0.156 0.127 1.000 0.009 0.006 4.533
Model 20 MSC CR 0.885 0.158 0.123 0.995 0.032 0.022 3.387
Model 03 - MSC 0.884 0.158 0.125 1.000 0.005 0.003 2.562
Model 06 - Smoothed 0.883 0.159 0.116 0.997 0.024 0.016 5.066
Model 07 CR - 0.883 0.159 0.124 0.996 0.031 0.021 2.844
Model 25 SNV - 0.882 0.160 0.119 0.995 0.034 0.023 3.987
Model 34 Nor. Area MSC 0.879 0.162 0.127 0.993 0.041 0.028 3.772
Model 33 Nor. Area Detrended 0.877 0.163 0.131 1.000 0.000 0.000 6.058
Model 27 SNV Detrended 0.875 0.165 0.129 0.990 0.047 0.032 6.078
Model 23 MSC Nor. Area 0.873 0.165 0.126 0.994 0.038 0.026 4.851
Model 41 Smoothed SNV 0.872 0.166 0.123 1.000 0.009 0.006 6.382
Model 17 Detrended Nor. Area 0.872 0.167 0.133 0.986 0.055 0.039 3.408
Model 14 Detrended CR 0.869 0.168 0.136 0.992 0.042 0.029 3.810
Model 15 Detrended MSC 0.862 0.173 0.134 0.983 0.060 0.041 3.588
Model 08 CR Detrended 0.862 0.173 0.137 1.000 0.000 0.000 3.364
Model 16 Detrended SNV 0.861 0.173 0.136 0.990 0.046 0.031 4.030
Model 13 Detrended - 0.847 0.182 0.139 0.980 0.066 0.045 2.579
Model 39 Smoothed Detrended 0.838 0.187 0.121 0.998 0.019 0.014 5.874
Model 02 - Detrended 0.836 0.188 0.136 0.979 0.068 0.046 6.840
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Figure 44 – Comparação do conteúdo total de clorofila previsto versus medido para diferentes modelos de
regressão MiniRocket utilizando dados de teste
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Source: Own authorship (2024).

Table 22 and Figure 44 present the performance metrics of various MiniRocket regres-

sion models, with Model 36 standing out as the best. This model, which utilizes data normalized

by area and smoothed (same dataset with different preprocessing concatenated), achieved a

notable R2 of 0.928 on the test set, with a root mean squared error (RMSE) of 0.125 and a

mean absolute error (MAE) of 0.094. On the training set, Model 36 nearly achieved perfect

accuracy with an R2 of 0.999, and RMSE and MAE values of 0.013 and 0.009, respectively.

Additionally, it demonstrated a relatively brief training time of 3.392 seconds, highlighting its
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excellent balance of precision and efficiency.

4.4.2 Deep Neural Network-Based Model for Total Chlorophyll Estimation in Wheat Leaves

Table 23 presents the performance metrics for various DNN regression models applied to

different datasets. It also shows the values of the coefficient of determination 𝑅2, root mean square

error (RMSE), and mean absolute error (MAE) for both test and training sets. Additionally, the

training time for each model is included. The models were evaluated using different combinations

of data preprocessing techniques. The results indicate that models with preprocessing techniques

and combinations using preprocessed datasets show better performance, with higher 𝑅2 values

and lower errors. It is noteworthy that the training time in all cases exceeds 1 minute.

Figure 45 illustrates the performance of the DNN models for estimating chlorophyll

content in leaves using test data. In this figure, the best models are highlighted. The subfigures

corresponding to the top models show the predictions made compared to the actual values,

providing a clear view of the accuracy and effectiveness of each model in the estimation task.

The selection of the models presented in the figure encompasses a variety of preprocessing

configurations, allowing for an assessment of their impact on prediction performance.
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Table 23 – Performance metrics of various DNN regression models on different datasets. The table shows 𝑅2,
root mean squared error (RMSE), and mean absolute error (MAE) for both the test and train
sets, along with the time taken for each model. Models are evaluated using different combinations
of data preprocessing techniques and feature sets

Model Data1 Data2 Result Test Set Result Train Set Training Time
𝑅2 RMSE MAE 𝑅2 RMSE MAE (s)

Model 18 Detrended Smoothed 0.993 0.040 0.027 0.996 0.030 0.024 81.55
Model 27 SNV Detrended 0.990 0.045 0.037 0.993 0.040 0.031 80.74
Model 16 Detrended SNV 0.989 0.048 0.037 0.991 0.044 0.036 84.55
Model 6 - Smoothed 0.987 0.053 0.032 0.997 0.024 0.018 87.56
Model 5 - Nor. Area 0.981 0.065 0.046 0.994 0.036 0.028 90.31
Model 25 SNV - 0.979 0.067 0.041 0.993 0.040 0.031 80.76
Model 11 CR Nor. Area 0.975 0.073 0.058 0.985 0.056 0.047 81.15
Model 36 Nor. Area Smoothed 0.974 0.074 0.035 0.997 0.027 0.021 81.23
Model 31 Nor. Area - 0.973 0.076 0.055 0.988 0.052 0.036 81.36
Model 22 MSC SNV 0.973 0.077 0.048 0.994 0.036 0.028 78.57
Model 32 Nor. Area CR 0.967 0.084 0.065 0.986 0.055 0.039 84.62
Model 15 Detrended MSC 0.961 0.091 0.047 0.993 0.039 0.029 86.07
Model 4 - SNV 0.956 0.098 0.063 0.986 0.056 0.041 88.33
Model 37 Smoothed - 0.955 0.099 0.044 0.997 0.027 0.021 112.60
Model 30 SNV Smoothed 0.954 0.099 0.057 0.986 0.056 0.038 85.16
Model 21 MSC Detrended 0.954 0.100 0.043 0.994 0.036 0.029 78.70
Model 39 Smoothed Detrended 0.953 0.101 0.046 0.996 0.029 0.021 118.38
Model 33 Nor. Area Detrended 0.952 0.102 0.054 0.994 0.036 0.029 80.75
Model 3 - MSC 0.952 0.102 0.074 0.976 0.072 0.058 108.37
Model 41 Smoothed SNV 0.949 0.105 0.054 0.990 0.048 0.035 136.86
Model 42 Smoothed Nor. Area 0.947 0.107 0.057 0.990 0.045 0.033 136.73
Model 19 MSC - 0.944 0.110 0.069 0.988 0.052 0.041 76.50
Model 35 Nor. Area SNV 0.941 0.113 0.061 0.990 0.047 0.034 79.42
Model 34 Nor. Area MSC 0.939 0.115 0.051 0.993 0.038 0.031 78.90
Model 2 - Detrended 0.934 0.119 0.055 0.990 0.046 0.037 148.25
Model 17 Detrended Nor. Area 0.921 0.130 0.071 0.985 0.058 0.047 86.32
Model 13 Detrended - 0.921 0.131 0.060 0.993 0.038 0.033 84.17
Model 40 Smoothed MSC 0.911 0.139 0.067 0.984 0.059 0.039 152.35
Model 20 MSC CR 0.909 0.140 0.084 0.991 0.044 0.036 76.64
Model 10 CR SNV 0.901 0.146 0.086 0.990 0.047 0.039 78.98
Model 14 Detrended CR 0.897 0.149 0.084 0.988 0.052 0.039 86.95
Model 23 MSC Nor. Area 0.896 0.150 0.073 0.991 0.045 0.031 80.70
Model 29 SNV Nor. Area 0.891 0.153 0.066 0.995 0.033 0.026 81.36
Model 28 SNV MSC 0.883 0.159 0.127 0.902 0.146 0.125 81.54
Model 38 Smoothed CR 0.882 0.159 0.099 0.983 0.060 0.044 120.37
Model 9 CR MSC 0.882 0.160 0.092 0.965 0.087 0.073 83.55
Model 24 MSC Smoothed 0.876 0.164 0.089 0.980 0.065 0.043 78.70
Model 12 CR Smoothed 0.849 0.181 0.110 0.976 0.072 0.047 82.32
Model 8 CR Detrended 0.847 0.182 0.095 0.985 0.057 0.040 82.63
Model 26 SNV CR 0.840 0.186 0.114 0.989 0.050 0.040 80.94
Model 1 - CR 0.720 0.246 0.154 0.991 0.044 0.036 140.05
Model 7 CR - 0.709 0.250 0.152 0.986 0.056 0.048 83.39

Source: Own authorship (2024).

The comparison of performance metrics for various MiniRocket and DNN regression

models on the datasets reveals significant results. In Table 22, Model 36, using normalized

by area and smoothed data, showed an R2 of 0.928 and RMSE and MAE of 0.125 and 0.094,

respectively, on the test set, with a training time of 3.392 seconds. In comparison, Table 23 shows
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Figure 45 – Performance of DNN Models for Estimating Chlorophyll Content in Leaves with Test Data
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that Model 18, using detrended and smoothed data, achieved an R2 of 0.993, with RMSE and

MAE of 0.040 and 0.027, respectively, on the test set, and a considerably higher training time

of 81.55 seconds. These results highlight the superiority of Model 18 in terms of classification

accuracy, albeit at the cost of a longer training time. The higher R2 in the results reflects a better

predictive capability of the model for estimating total chlorophyll values in wheat leaves using

diffuse reflectance spectra.
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5 FINAL CONCLUSIONS AND FUTURE WORKS

This dissertation concerns the detecting water and light stress and estimating total

chlorophyll in wheat leaves using multi-angular reflectance spectroscopy supervised by arti-

ficial intelligence. Chapter 2 provided a literature review of related works, highlighting their

contributions and final notes on the limitations of each method. The conclusion of the litera-

ture review chapter emphasized the lack of research on multi-angular reflectance spectroscopy

measurements.

Chapter 3 presented methodologies ranging from setting up stress environments for

containers and monitoring them, seed germination to growth over 7 days, methods for generating

spectral reflectance and absorption databases, preprocessing techniques for spectral data, and

artificial intelligence approaches for data analysis. These included MiniRocket, which is based

on time series for water and light stress classification, and two approaches—MiniRocket and

DNN—for estimating total chlorophyll in wheat leaves.

The analysis in Chapter 4 provided information for each stage of the dissertation,

highlighting the robustness and reliability of the methodologies introduced in Chapter 3 through

the data obtained from implementation. The results of environmental conditions for the containers

ensured that temperature and humidity results were similar across containers, with the exception

of the container without any lighting. Statistical analysis of the reflectance and absorption

spectra provided a spectral database. In Section 4.3, MiniRocket models for water and light

stress classification in wheat leaves are presented. MiniRocket models demonstrated exceptional

capability for classifying water stress in wheat leaves, distinguished by its relatively short

processing time. The impact of preprocessing and the use of two preprocessed datasets to

improve classification significantly enhanced accuracy, achieving perfect results (100%) for

the test dataset.For water stress classification, a perfect result was achieved, with model 26

reaching 100% accuracy on the test dataset. For light stress classification, solid performance

was achieved, with model 01 reaching 98.6% accuracy on the test dataset, suggesting that the

combination of preprocessing techniques may be fundamental to further improving precision.

For estimating total chlorophyll in leaves, MiniRocket showed shorter processing times (as low

as 2.667 s and up to 6.840 s) but with a coefficient of determination of 0.928 for the best model.

DNN had longer processing times (ranging from 76.50 s to 152.35 s) but achieved nearly perfect

coefficients of determination (0.993) for the test dataset of the best model. These models with
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high accuracy enable the classification of water and light stress in wheat leaves using diffuse

reflectance spectra. Additionally, the coefficient of determination close to one allows for a more

precise estimation of total chlorophyll in wheat leaves using diffuse reflectance spectroscopy.

5.1 COMPLIANCE WITH SPECIFIC OBJECTIVES

In addition to the general conclusions drawn from this study, it is crucial to revisit the

specific objectives outlined in Section 1.2 and assess how each has been achieved. Below is a

summary of how each objective has been addressed and demonstrated in the research:

1. Water and Light Stress Environments: This objective was achieved through Section 4.1,

where the construction and statistical monitoring results of these environments during the

experimental period are presented. The results indicate that the environmental conditions

for the containers are relatively similar, with differences noted for the container without

any lighting.

2. Spectral Database for Reflection and Absorption: This objective is addressed in Sec-

tion 4.2, which presents statistical results for diffuse reflection spectra for each sample,

as well as a comparison of absorption spectra (obtained with an HR4000 spectrometer)

with results from two spectral indices (spectrophotometers). Both methods of obtaining

spectral indices for chlorophyll estimation and the degree of correlation of the results are

discussed.

3. Machine Learning Models for Detecting Water and Light Stress: Demonstrated in

Section 4.3, where water stress classification is discussed in Subsection 4.3.1 and light

stress classification in Subsection 4.3.2. The comparison of different models for various

types of abiotic stress in wheat leaves through multi-angular reflectance spectroscopy is

presented.

4. Machine Learning Models for Estimating Total Chlorophyll Amount: Addressed in

Section 4.4, where two approaches are presented: first, the MiniRocket time series-based

model (Subsection 4.4.1) and second, the deep learning-based DNN model (Subsec-

tion 4.4.2), with a comparison of their results.

In conclusion, this research contributes to the advancement of methods for detecting

stress and estimating total chlorophyll in wheat leaves using diffuse reflectance spectra measured
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at different angles of incident light (multi-angular). A method tolerant to angular variations for

estimating total chlorophyll and detecting stress in wheat leaves is proposed.

5.2 FUTURE WORKS

Looking ahead, future research efforts could focus on further improving the methodol-

ogy proposed and applied in this study by expanding the dataset to include different plant species

and generating robust models, with participation from the biological and/or agricultural fields.

In future work, the proposed models, such as MiniRocket, are expected to be key

tools for monitoring systems, especially due to their speed and efficient processing capability.

MiniRocket, with its exceptional speed, will enable the implementation of real-time monitoring

systems.

The proposed models, such as MiniRocket and DNN, are expected to be applied to

different plant species for disease prediction tasks using diffuse reflectance spectra obtained from

leaves.

Additionally, the proposed models are anticipated to be used in applications for detecting

agrochemicals through diffuse reflectance spectra obtained from leaves.

Likewise, the proposed models, such as MiniRocket, DNN, and others to be explored,

may be applied for the detection of heavy metals using diffuse reflectance spectra obtained from

leaves.
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