Study of Interferents of a Plasmonic Sensor for Uremic Toxins

Elberth M. Schiefer; Andressa F. Santos; Marcia Muller; Andréa E. M. Stinghen; Lucas H. Negri; José L. Fabris All Authors

35 Full Text Views

Abstract	Abstract:	
Document Sections	This work shows the response of a colorimetric sensor based on albumin bound to citrate-capped silver nanoparticles to interferents. The sensor capability of quantifying protein-bound uremic toxins, such as indoxyl	
I. Introduction	sulfate, and uremic toxins that do not bind to proteins, such as creatinine and urea, is demonstrated. Furthermore, optimal sensor outputs were obtained independently of concentration of silver nanoparticles,	
II. Methods	indicating that smaller nanoparticles are possibly responsible for the sensing of below-uremic concentrations of	
III. Results	uremic toxins.	
IV. Discussion	Published in: 2022 SBFoton International Optics and Photonics Conference (SBFoton IOPC)	
V. Conclusion	Date of Conference: 13-15 October 2022	DOI: 10.1109/SBFotonIOPC54450.2022.9992542
Authors	Date Added to IEEE Xplore: 26 December 2022	Publisher: IEEE
Figures	ISBN Information:	Conference Location: Recife, Brazil

More Like This

Optical Fiber Sensors Based on Local Surface Plasmon Resonance Modified with Silver Nanoparticles

2012 Second International Conference on Intelligent System Design and Engineering Application Published: 2012

D-Shaped Photonic Crystal Fiber Plasmon Sensors Based on Self-Plasmon Sensors Based on Self-Reference Channel IEEE Photonics Technology Letters Published: 2020