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Abstract—This work proposes the usage of fiber Bragg
gratings and artificial neural networks for distributive tactile
sensing. Four fiber Bragg gratings were mounted on a polymethyl
methacrylate rectangular plate. An artificial neural network
was trained with experimental data to estimate the position of
a cylindrical load on the plate. Results have shown a mean
error corresponding to 1.37% of the sensing region’s diagonal
dimension. The obtained error is smaller than those achieved in
literature, using a smaller number of sensors and a more compact
neural network.

I. INTRODUCTION

A common strategy in the development of tactile sensing
systems resides in point-to-point or array methods, where a
number of point transducers are employed to monitor discrete
positions [1], [2]. While this strategy is capable of fine-form
discrimination, it is also costly for applications on extended
surfaces due to the required number of sensors. Also, it is
desirable that the response of each individual sensor to be
restricted to its local area, with a low cross-coupling between
neighbor sensors.

Another way to develop tactile systems is by using distribu-
tive sensing. The distributive tactile sensing method employs
a continuous mechanical element, such as an elastic surface
that deforms in the presence of a load. This deformation is
sensed by a reduced number of sensors placed on different
points of the surface, and the outputs of the sensors are
then combined to estimate properties of the applied load.
Distributive tactile sensing has been applied for the detection
of the shape and position of loads in 1D and 2D systems [3],
to determine the deformation on a plate [4], and to track the
position of a moving load along a plate [5]. Artificial neural
networks (ANN) can be employed to learn an approximate
relation between sensor outputs and load properties, such as
the position and shape of the load [3] or its movement [5].
Recently, it was shown the usage of fiber Bragg optical sensors
and ANNs in the localization of surface impacts [6].

This preliminary work proposes the usage of fiber Bragg
gratings (FBG) with artificial neural networks for the distribu-
tive sensing of the position of a cylindrical load on a rectangu-
lar plate. In this context, the use of FBGs is interesting mainly
due to its intrinsic strain sensitivity, multiplexing capabilities,
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small size, passivity (absence of electrical components on the
transducer) and no influence on the plate elasticity. Artificial
neural networks are employed here to determine the relation
between the FBGs’ output and the load position by using
experimental data instead of an analytic solution. Experimental
results are shown and compared to similar works.

II. METHODOLOGY

A. FBG Strain Sensing

A simple FBG consists in the periodic modulation of the
core’s refractive index of a single mode optical fiber [7]. This
modulation results in the reflection of the incident light with
wavelength close to the grating resonance wavelength λb, given
by Equation 1:

λb = 2neffΛ, (1)

where neff is the effective refractive index of the core and
Λ is the grating’s pitch. Straining the FBG or changing its
temperature results in changes to both Λ and neff [7], thus
changing λb. More specifically, the strain ε will result in a
wavelength shift given by Equation 2 [7]:

∆λb = λb(1 − pe)ε, (2)

where pe is the strain-optic constant given by Equation 3:

pe =
n2
eff

2
[p12 − ν(p11 + p12)] . (3)

Typical values for the strain-optic tensor components and
the Poisson ratio are p11 = 0.113, p12 = 0.252, and
ν = 0.16 [8]. By assuming an effective refractive index of
1.482 and an original λb of 1535 nm, a strain of 82.737 µε is
required for a ∆λb equal to 100 pm. Besides being sensitive to
strain, an FBG is also sensitive to temperature. The wavelength
shift ∆λb caused by the temperature variation ∆T is given by
Equation 4 [7]:

∆λb = λb(αΛ + αn)∆T, (4)
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where αΛ is the thermal expansion coefficient and αn is
the fiber thermo-optical coefficient, with typical values of
0.55 × 10−6 and 8.6 × 10−6, respectively [7]. For an
original λb of 1535 nm, a ∆T of 7.12 K is required for a
∆λb of 100 pm. The use of an FBG as a strain sensor usually
requires temperature control or the usage of a reference FBG
to compensate for temperature effects.

B. Experimental Setup

A rectangular sensing surface (31.8 cm × 30.7 cm) was
developed by using a polymethyl methacrylate (PMMA) plate,
0.5 cm thick. The plate is supported by four silicone hemi-
spheres placed at its four corners, as shown in Figure 1. The
hemispheres present a radius of 0.3 cm, and were glued to
the plate. This positioning permits the plate to deform under
transverse forces.

Four FBGs were placed at the plate’s underside in order
to sense plate deformations. The FBGs were spliced into
a single fiber and positioned on the two diagonals of the
plate, as depicted in Figure 1. This diagonal disposition was
implemented to maximize the response of the FBGs [9]. Each
FBG was initially positioned by using adhesive tape and
subjected to a previous strain, and then properly held to the
plate by using cyanoacrylate adhesive. A linear graph paper
sheet, with millimeter graduation, was placed on top of the
plate to help the load positioning.
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Fig. 1. Schematic diagram (top view) showing the four FBG sensors (A, B,
C, D).

The employed FBGs present different resonance wave-
lengths to allow the interrogation by frequency multiplex-
ing. Specifically, the resonance wavelengths of the FBGs
shown in Figure 1 are: A = 1539.402 nm, B = 1535.304 nm,
C = 1530.964 nm and D = 1527.288 nm at 23 ◦C, measured
before the mounting on the plate and the pre-straining. A
broadband light emitting diode (Superlum PILOT 2 LED,
centered at 1558.2 nm with a FWHM of 73.8 nm), was used
to interrogate the FBGs. The light reflected by FBGs is
collected by an optical interrogator (Ibsen I-MON E512,
resolution < 0.5 pm) at an interrogation rate of approximately
20 spectra per second. This optical setup is shown in Figure 2.
The peak wavelengths of the reflected spectrum were computed
by using Gaussian fitting. The experiments were performed in

an air-conditioned room, with the temperature control set to
23 ◦C.

LED

Circulator
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Fig. 2. Experimental setup: the LED illuminates the FBGs on the plate,
whose reflected light spectra is analyzed by using the I-MON unit.

A cylindrical load, with mass of 0.5 kg and radius of
1 cm was used in the experiments. The load was placed
(centered) on distinct points of the surface, comprised in a
20 cm × 20 cm restricted area centered on the plate, in order
to avoid regions close to the edges. Two spectra were recorded
for each load, one before as reference and one after the
placement. The reference spectrum was used to compensate
for thermal variations and mechanical creep. To further reduce
the undesirable fluctuating effects on the mechanical creep,
spectra were recorded at least 5 s after removing or placing
the load on the sensing surface.

Placements were performed on a symmetrical grid with
points separated by steps of 5 cm, on both axes, totaling 25
points. These 25 placements were repeated 3 times, resulting
in 3 data sets.

C. Load Position Estimation

An artificial neural network was employed to estimate
the load position on the sensing surface. The ANN presents
a multilayer perceptron topology, with four neurons in the
input layer, five neurons in the singleton hidden layer and two
neurons in the output layer. The inputs to the ANN are the peak
wavelength shifts (before and after loading) of the four FBGs,
and the outputs are the estimated position of the load on the
x and y axes. All neurons employed a symmetric sigmoidal
activation function, with all the inputs and outputs linearly
scaled to the −1 to 1 range in order to match the activation
function’s operating range.

The training of the ANN was achieved by using the
Neuron-by-Neuron algorithm [10] and random initial synaptic
weights. The ANN was trained with one of the three data sets.
The network topology and parameters were chosen so that the
error for a second data set (validation data set) was minimized.
Lastly, the developed ANN was tested with the third unseen
data set to estimate the network’s generalization capabilities.

Three different error metrics were established: the mean
Euclidean distance (error) between the actual point and the
estimated point, the mean absolute error on the x axis, and
the mean absolute error on the y axis.
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III. RESULTS AND DISCUSSION

The obtained experimental results are shown in Table I.
One should notice that the Euclidean error can not be computed
from the final mean absolute error on the axes.

TABLE I. EXPERIMENTAL RESULTS FOR THE THREE ERROR METRICS.

Metric Value [cm]
Mean absolute error on the x axis 0.273
Mean absolute error on the y axis 0.165

Euclidean error 0.388

The measured strain responses of the four mounted FBGs
are shown in Table II, representing the maximum and mean
wavelength shifts during the acquisition of the test data set.

TABLE II. STRAIN RESPONSES OF THE EMPLOYED FBGS DURING THE
EXPERIMENTS.

FBG Max. ∆λb [pm] Mean ∆λb [pm]
A 111 37
B 128 53
C 118 38
D 142 50

Figure 3 shows an Euclidean error map, computed with the
test data. This map was built by interpolating the Euclidean
errors to improve its visualization.

Fig. 3. Error map built by interpolating the Euclidean error, in cm, computed
with the test data. The crosses represents the actual points of the test data.

The cylindrical load was placed and removed repeatedly
at point x = 15 cm and y = 15 cm, with the corresponding
wavelength shifts (FBG B) shown in Figure 4. A more detailed
view of the wavelength shifts caused only by the mechanical
creep and temperature variations is seen in Figure 5, which
corresponds to the shifts (FBG B) shortly after the placement
and removal of the load.

The Euclidean error shown in Table I corresponds to 1.37 %
of the restricted placement area’s diagonal. The corresponding
root mean square error is equal to 1.93 % of the diagonal,
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Fig. 4. Wavelength shifts (FBG B) after a sequence of placements and
removals of the the cylindrical load at position x = 15 cm and y = 15 cm.
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Fig. 5. Wavelength shifts (FBG B) due to mechanical creep and temperature
changes after one placement and one removal of the cylindrical load at the
point x = 15 cm and y = 15 cm.

which is smaller than the 2.7 % error reported by Cowie et
al [3]. Also, it should be noticed that this work proposes a
simpler approach than described by Cowie et al [3], by using
4 FBGs instead of 9 and a more compact ANN with 5 hidden
neurons instead of 42, albeit using a smaller sensing area.

As shown in Table II, the FBGs present different strain
responses, despite having approximately the same structure
and sensitivities. This result indicates that the FBGs are not
symmetrically positioned, and that the pre-tensioning was not
uniform among the four gratings. The difference between
the error on the x and y axes can also be a result of this
asymmetrical positioning.

When observing the approximate error map shown in
Figure 3, one can see that there are some points where the
Euclidean error is distinctly higher than the others. These er-
rors may have been caused by the mechanical creep evidenced
in Figure 4.

The variations shown in Figures 4 and 5 can be explained
by two factors: temperature variations on the FBGs, and the
plate’s mechanical creep. Those error factors can be atten-
uated by reading a reference spectrum before each position
estimation, as performed in this work. Nevertheless, it can
be a limiting factor. To overcome this drawback, one could
place an unstrained FBG on the sensing region to compensate
temperature variations. Other materials and methods to fixate
the FBGs could be tried in order to minimize the mechanical
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creep, which is assumed to be the greatest contributor to the
estimation error. Also, the sensor locations could be optimized
to enhance the estimation performance, as already proposed in
literature [11], [12].

IV. CONCLUSION

This work proposed the usage of FBGs and a distributive
manner to estimate the position of a cylindrical load on
a PMMA plate. Experiments showed superior results than
those already reported in literature [3] while using a sim-
pler approach with a reduced number of FBGs and a more
compact ANN. Albeit attenuated by using a reference reading,
the mechanical creep, temperature variations, and permanent
changes in the pre-tensioning of the FBGs were identified as
primary error sources. Future works include the reduction of
error sources by experimenting different methods to fixate the
FBGs on the plate, different plate materials, the development of
a methodology capable of estimating the position for different
load weights, and the optimization of the sensors’ positions.
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