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Abstract— This work shows a method to determine, in real
time, external impact location on planar structures based on
responses of optical fiber strain sensors. In order to demonstrate
experimentally the sensing approach, four fibre Bragg gratings
were attached to a polymeric board for detecting the disturbance
caused by a drop weight impact. An artificial neural network was
used to process the sensor responses and to identify the quadrant
location of the impact on the structure. The results demonstrate
that such location can be predicted with correct classification
rate of approximately 85.0% in validation step.
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L INTRODUCTION

Mechanical impacts can affect structures compromising its
integrity, operation performance and lifetime. An accurate
characterization of the impact can prevent problems related to
structural damages in naval, aerospace and civil structures. The
development of techniques able to provide information about
the magnitude and location of the impact forces, as well as its
influence on the structural health, has been extensively
investigated. The location and history of impact force acting on
a panel were identified by measuring strain response with strain
gauges attached on the panel surface. The method employs an
experimental transform matrix relating the force history to the
strain response [1]. The dynamic response of resins using plate
impact experiments was studied in the impact velocity range
from 80 to 960 m/s. The orthogonal components of stress were
analyzed both during and after the shock arrival [2]. Global and
local post-impact strain measurements were employed to
determine the low velocity impact and quasi-static failure of
polymethylmethacrylate (PMMA). Fiber Bragg Grating (FBG)
sensors and finite-element analyses were applied to obtain
information about the time behavior of the produced failure [3].

Conventional methods employed in structural health
monitoring to investigate and locate damages are based on the
detection of changes in the natural resonance frequencies of the
structure. These methods rely on the previous modeling of the
structure and become difficult to apply as the complexity of
geometry increases. Therefore, the study and development of
experimental techniques to identify the external impacts
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location and force, even in complex structures with unknown
characteristics, is an interesting field of research.

In the field of structural health monitoring, fiber Bragg
gratings (FBG) have emerged in the last past years as
substitutes to conventional electrical transducers [4-6]. These
optical fiber transducers show high sensitivity, immunity to
electromagnetic interference and to the optical source intensity
instabilities when wavelength coded. Besides, a large number
of sensors can be multiplexed in the same optical link
performing a quasi-distributed monitoring in real time.

Recently, some works have reported that the features of
optical fiber sensors can be improved when their responses are
supervised by artificial neural networks (ANN) [7-10]. This
features results from the ANN ability to provide mathematical
models to learn and generalize non-linear and complex
behaviors by mean of an implicit mapping between input and
output values [11]. Once ANN has adaptive learning ability,
parallel processing capability and good generalization property
for unseen data, ANN models have been used as an efficient
technique to data-driven modeling. Particularly in applications
where industrial fault detection is an important issue, neural
network model can be used to combine information provided
by sensors at different points in order to identify defects.
Within this scenario, ANN can be used to perform both pattern
classification and recognition in structural health monitoring.

In this paper, a method to identify the impact location is
presented. Four FBG were used as strain transducers to detect
disturbances propagating on a polymeric board as a result of a
drop weight impact. Preliminary results show that the use of an
ANN can supply, in real time, the quadrant location of the
impact on the structure.

II. METHODOLOGY

A. Experimental Set-up

A square 60 cm side and 5 mm thick board of polymethyl
methacrylate (PMMA) was employed as test structure, with
four FBG attached to its corners. The FBGs presenting
resonances wavelengths at 1534, 1538, 1540 and 1543 nm at
(20.0 £ 0.5) °C were bonded at the corners of each quadrant
with cyanoacrylate, angled at 45° from the sides. Until the cure



of the adhesive, FBGs were kept under constant dilational
stress. A bi-dimensional matrix (50 cm x 50 cm) of points 5 cm
apart was drawn on the board surface to provide the impact
location.

Fig. 1 shows the geometry of the test board employed in the
experiments, with a Cartesian coordinate system whose origin
is the center of the plate. Cartesian coordinates (x;y;) with i=1
to 4 of the four transducers (FBG1, FBG2, FBG3 and FBG4) in
centimeters are respectively (-27.5,-27.0); (+26.0,-26.6);
(+27.0,+26.6) and (-26.5,+26.5). Impact is depicted by the
smaller red circle in quadrant Q3, while the wave-front
associated with the perturbation is represented by the bigger
red circumference.

A cylindrical hollow tube (8 cm length) kept in the vertical
position was employed to guide a free falling metallic ball (34g
weight) responsible by the impact. The impact was produced
on each quadrant of the test board at (20.0 + 0.5) °C. When the
disturbance produced by the impact reach each FBG, a
dilational/compressional stress associated with the time
evolution of the disturbance is detected by the gratings as
positive/negative time shifts in their resonance wavelengths.
Impacts were measured 20 times under reproducibility
conditions for each quadrant of the test board.
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Fig. 1. Geometry of the PMMA test board instumented with FBGs for

detect impact locations.

FBGI, FBG2, FBG3 and FBG4 were connected in series to
a LED (Superlum PILOT 2) with wavelength range from 1520
to 1570 nm. Light back reflected from the FBGs at the resonant
wavelengths is measured by an optical interrogation monitor
(IBSEN PHOTONICS IMON-512E, 970 Hz maximum
sampling rate, resolution < 0.5 pm), operating with a dispersion
grating and a diode array. The IMON is used to measure
simultaneously the wavelength shifts of the four FBG
resonances (8)\,1:3(;1([), SXFBGZ(I)’ 8)\,1:3(;3(” and 89\4FBG4(’)) along
approximately 0.3 seconds. The beginning of this time window
was selected by taking the time the FBG closest to the impact
location first detects the disturbance, acting as a trigger for the
data acquisition. Data of each grating sensor were used as
inputs for an artificial neural network model. This architecture
was successfully trained and tested to identify the quadrant of
impact, without the need for physical modeling.

B. Artificial Neural Network Model

The ANN shown in Fig. 2 was implemented in proprietary
software Matlab® version 2011 by means of functions available
in Neural Network Toolbox™.
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Fig. 2. Schematic diagram of the ANN used to supply the quadrant

location of the impact produced on PMMA test board.

It was built an ANN of type Multilayer Perceptron with
four neurons in the input layer (associated with FBG time
responses), twenty neurons in the first hidden layer, thirty
neurons in the second hidden layer, twenty neurons in the third
hidden layer and one neuron in the output layer (associated
with quadrant location of impact). The number of hidden layers
and the number of neurons of each hidden layer were only
determined after consecutive simulations which were realized
in order to obtain the model with the minimal root mean square
error and the best predictive capability.

The ANN was trained during 40 epochs according to
Levenberg-Marquardt back-propagation algorithm with initial
learning rate of 0.10 and mean squared error goal of 0.01%.
Hyperbolic tangent sigmoid transfer functions were used in
hidden layers. On the other hand, a linear transfer function was
employed in output layer.

From the set of data obtained with 20 impacts measured at
each quadrant, a sub-set randomly chosen corresponding tol5
measurements was used as input data to train the ANN. The
remaining set of 5 experimental measurements for each
quadrant was employed to test the ANN. The ANN was
validated with experimental data not used in the training step,
allowing evaluating its generalization capability. The ANN
output values used as target were 1, 2, 3 and 4, which were
associated with the quadrants Q1, Q2, Q3 and Q4, respectively.

The ANN performance was evaluated in terms of correct
classification rates for both training and validation steps. These
rates were computed by the ratio between the number of
correct classifications regarding the respective targets and the
total number of targets. The classification provided by ANN
was considered correct if its response is within the interval of
+ 0.3 established around the output target.

III.  RESULTS AND DISCUSSIONS

Fig. 3 shows a typical four-FBG wavelength time response
when an impact was produced at coordinates x, = y, = —20.0
cm. Similar set of data were used as inputs for the ANN,
resulting from the other produced impacts, with the IMON



frequency set at 948.8 Hz. The comparison between the target
values and the values provided by ANN model for training and
validation data are presented in Fig. 4 and 5, respectively.
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Fig. 3. Wavelength shift time response of FBGs when an impact was
produced at coordinates xy = yy=-20.0 cm.
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Fig. 4. ANN responses and target values for training data.
O target * estimated
T T T T T
*
* kX 5 *
4 0000 Of|Q4
*
= 3k #x5ow 4 |as3
o]
= *
5 *
o) *
Zz ok 4
Z2 o%o0o0o0 Q2
<
" *
1 o8 x%3 4]t
1 1 1 1 1
0 5 10 15 20

SAMPLE NUMBER

Fig. 5. ANN responses and target values for validation data.

The correct classification rates for both training and
validation steps were respectively 90.0 and 85.0%. The mean
squared error obtained in training and validation steps were
3.5% and 5.5%, respectively. These results prove the good
learning and generalization capability of the ANN model.

IV. CONCLUSION

The results obtained in this work show that FBG strain
sensors can be used to identify external impact location on
structures in real time, despite of events are complex and fast.
FBG must be properly attached to the structure and the time
shifts of their wavelength resonances need to be simultaneously
measured. The ANN model showed to be able to determine the
quadrant of the impact on the structure without the need for
physical modeling. ANN showed a good learning and
generalization capability and its correct classification rate was
85.0% in validation step.
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